from fastapi import FastAPI from fastapi.responses import StreamingResponse from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn from typing import Generator import json # Asegúrate de que esta línea esté al principio del archivo import torch app = FastAPI() # Initialize the InferenceClient with your model client = InferenceClient("meta-llama/Llama-2-7b-chat") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.8 max_new_tokens: int = 9000 top_p: float = 0.15 repetition_penalty: float = 1.0 def format_prompt(message, history): # Simple structure: alternating lines of dialogue, no special tokens unless specified by the model documentation conversation = "" for user_prompt, bot_response in history: conversation += f"User: {user_prompt}\nBot: {bot_response}\n" conversation += f"User: {message}" return conversation # No changes needed in the format_prompt function unless the new model requires different prompt formatting def generate_stream(item: Item) -> Generator[bytes, None, None]: formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) generate_kwargs = { "temperature": item.temperature, "max_new_tokens": item.max_new_tokens, "top_p": item.top_p, "repetition_penalty": item.repetition_penalty, "do_sample": True, "seed": 42, # Adjust or omit the seed as needed } # Stream the response from the InferenceClient for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True): # Check if the 'details' flag and response structure are the same for the new model chunk = { "text": response.token.text, "complete": response.generated_text is not None } yield json.dumps(chunk).encode("utf-8") + b"\n" @app.post("/generate/") async def generate_text(item: Item): return StreamingResponse(generate_stream(item), media_type="application/x-ndjson") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)