import re from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from fastapi.responses import JSONResponse from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn from typing import Generator, List import json # Asegúrate de que esta línea esté al principio del archivo import nltk import os import google.protobuf # This line should execute without errors if protobuf is installed correctly import sentencepiece from transformers import pipeline, AutoTokenizer,AutoModelForSequenceClassification,AutoModel import spacy import numpy as np import torch nltk.data.path.append(os.getenv('NLTK_DATA')) app = FastAPI() # Initialize the InferenceClient with your model client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.8 max_new_tokens: int = 4000 top_p: float = 0.15 repetition_penalty: float = 1.0 def format_prompt(current_prompt, history): formatted_history = "" for entry in history: if entry["role"] == "user": formatted_history += f"[USER] {entry['content']} [/USER]" elif entry["role"] == "assistant": formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]" formatted_history += f"[USER] {current_prompt} [/USER]" return formatted_history def generate_stream(item: Item) -> Generator[bytes, None, None]: formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) # Estimate token count for the formatted_prompt input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization # Ensure total token count doesn't exceed the maximum limit max_tokens_allowed = 32768 max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count)) generate_kwargs = { "temperature": item.temperature, "max_new_tokens": max_new_tokens_adjusted, "top_p": item.top_p, "repetition_penalty": item.repetition_penalty, "do_sample": True, "seed": 42, } # Stream the response from the InferenceClient for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True): # This assumes 'details=True' gives you a structure where you can access the text like this chunk = { "text": response.token.text, "complete": response.generated_text is not None # Adjust based on how you detect completion } yield json.dumps(chunk).encode("utf-8") + b"\n" class SummarizeRequest(BaseModel): text: str @app.post("/generate/") async def generate_text(item: Item): # Stream response back to the client return StreamingResponse(generate_stream(item), media_type="application/x-ndjson") # Define request model class TextRequest(BaseModel): text: str # Single string of long text # Load Longformer model and tokenizer tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") model = AutoModel.from_pretrained("allenai/longformer-base-4096") # Endpoint to process the document and return embeddings @app.post("/process_document") async def process_document(request: TextRequest): try: # Split the text into segments that fit within the model's max input size max_length = 4096 # Maximum token length for Longformer words = request.text.split() tokens = tokenizer.encode(request.text, add_special_tokens=True) input_ids = [] current_chunk = [] for token in tokens: if len(current_chunk) + len(tokenizer.convert_ids_to_tokens([token])) < max_length: current_chunk.append(token) else: input_ids.append(current_chunk) current_chunk = [token] if current_chunk: input_ids.append(current_chunk) # Add the last chunk if any # Generate embeddings for each segment embeddings_list = [] for ids in input_ids: inputs = {'input_ids': torch.tensor(ids).unsqueeze(0)} # Batch size 1 outputs = model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1).detach().numpy() embeddings_list.append(embeddings.tolist()) # Store embeddings for each segment return { "embeddings": embeddings_list } except Exception as e: print(f"Error during document processing: {e}") raise HTTPException(status_code=500, detail=str(e)) # @app.post("/summarize") # async def summarize(request: TextRequest): # try: # # Preprocess and segment the text # processed_text = preprocess_text(request.text) # segments = segment_text(processed_text) # # Classify each segment safely # classified_segments = [] # for segment in segments: # try: # result = classifier(segment) # classified_segments.append(result) # except Exception as e: # print(f"Error classifying segment: {e}") # classified_segments.append({"error": str(e)}) # # Optional: Reduce tokens or summarize # reduced_texts = [] # for segment in segments: # try: # reduced_text, token_count = reduce_tokens(segment) # reduced_texts.append((reduced_text, token_count)) # except Exception as e: # print(f"Error during token reduction: {e}") # reduced_texts.append(("Error", 0)) # return { # "classified_segments": classified_segments, # "reduced_texts": reduced_texts # } # except Exception as e: # print(f"Error during token reduction: {e}") # raise HTTPException(status_code=500, detail=str(e)) # if __name__ == "__main__": # uvicorn.run(app, host="0.0.0.0", port=8000)