import re from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from fastapi.responses import JSONResponse from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn from typing import Generator import json # Asegúrate de que esta línea esté al principio del archivo import nltk import os import google.protobuf # This line should execute without errors if protobuf is installed correctly import sentencepiece from transformers import pipeline, AutoTokenizer,AutoModelForSeq2SeqLM import spacy nltk.data.path.append(os.getenv('NLTK_DATA')) app = FastAPI() # Initialize the InferenceClient with your model client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.8 max_new_tokens: int = 4000 top_p: float = 0.15 repetition_penalty: float = 1.0 def format_prompt(current_prompt, history): formatted_history = "" for entry in history: if entry["role"] == "user": formatted_history += f"[USER] {entry['content']} [/USER]" elif entry["role"] == "assistant": formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]" formatted_history += f"[USER] {current_prompt} [/USER]" return formatted_history def generate_stream(item: Item) -> Generator[bytes, None, None]: formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) # Estimate token count for the formatted_prompt input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization # Ensure total token count doesn't exceed the maximum limit max_tokens_allowed = 32768 max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count)) generate_kwargs = { "temperature": item.temperature, "max_new_tokens": max_new_tokens_adjusted, "top_p": item.top_p, "repetition_penalty": item.repetition_penalty, "do_sample": True, "seed": 42, } # Stream the response from the InferenceClient for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True): # This assumes 'details=True' gives you a structure where you can access the text like this chunk = { "text": response.token.text, "complete": response.generated_text is not None # Adjust based on how you detect completion } yield json.dumps(chunk).encode("utf-8") + b"\n" class SummarizeRequest(BaseModel): text: str @app.post("/generate/") async def generate_text(item: Item): # Stream response back to the client return StreamingResponse(generate_stream(item), media_type="application/x-ndjson") # Load spaCy model nlp = spacy.load("en_core_web_sm") class TextRequest(BaseModel): text: str def preprocess_text(text: str) -> str: # Normalize whitespace and strip punctuation text = re.sub(r'\s+', ' ', text.strip()) text = re.sub(r'[^\w\s]', '', text) return text def reduce_tokens(text: str): # Process the text with spaCy doc = nlp(text) # Select sentences that might be more important - this is a simple heuristic important_sentences = [] for sent in doc.sents: if any(tok.dep_ == 'ROOT' for tok in sent): important_sentences.append(sent.text) # Join selected sentences to form the reduced text reduced_text = ' '.join(important_sentences) # Tokenize the reduced text to count the tokens reduced_doc = nlp(reduced_text) # Ensure this line is correctly aligned token_count = len(reduced_doc) return reduced_text, token_count def segment_text(text: str, max_tokens=500): # Slightly less than 512 for safety # Use spaCy to divide the document into sentences doc = nlp(text) sentences = [sent.text.strip() for sent in doc.sents] segments = [] current_segment = [] current_length = 0 for sentence in sentences: sentence_length = len(sentence.split()) # Simple word count if current_length + sentence_length > max_tokens: if current_segment: # Make sure there's something to add segments.append(' '.join(current_segment)) current_segment = [sentence] current_length = sentence_length else: current_segment.append(sentence) current_length += sentence_length # Add the last segment if any if current_segment: segments.append(' '.join(current_segment)) return segments classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english") def classify_segments(segments): return [classifier(segment) for segment in segments] @app.post("/summarize") async def summarize(request: TextRequest): try: # Preprocess and segment the text processed_text = preprocess_text(request.text) segments = segment_text(processed_text) # Classify each segment safely classified_segments = [] for segment in segments: try: result = classifier(segment) classified_segments.append(result) except Exception as e: print(f"Error classifying segment: {e}") classified_segments.append({"error": str(e)}) # Optional: Reduce tokens or summarize reduced_texts = [] for segment in segments: try: reduced_text, token_count = reduce_tokens(segment) reduced_texts.append((reduced_text, token_count)) except Exception as e: print(f"Error during token reduction: {e}") reduced_texts.append(("Error", 0)) return { "classified_segments": classified_segments, "reduced_texts": reduced_texts } except Exception as e: print(f"Error during token reduction: {e}") raise HTTPException(status_code=500, detail=str(e)) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)