from fastapi import FastAPI from fastapi.responses import StreamingResponse from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn import json # Make sure to import json app = FastAPI() client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.0 max_new_tokens: int = 1048 top_p: float = 0.15 repetition_penalty: float = 1.0 def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt import json # Import the JSON module def generate(item: Item): temperature = float(item.temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(item.top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=item.max_new_tokens, top_p=top_p, repetition_penalty=item.repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) # Convert stream to a list to check if it's the last element responses = list(stream) for i, response in enumerate(responses): # Prepare the chunk as a JSON object chunk = { "text": response.token.text, "complete": i == len(responses) - 1 # True if this is the last chunk } # Yield the JSON-encoded string with a newline to separate chunks yield json.dumps(chunk).encode("utf-8") + b"\n" @app.post("/generate/") async def generate_text(item: Item): return StreamingResponse(generate(item), media_type="application/x-ndjson")