Mars-Signvrse commited on
Commit
2c70be5
·
verified ·
1 Parent(s): 1abfadd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -13
app.py CHANGED
@@ -1,15 +1,23 @@
 
1
  import gradio as gr
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
  from peft import PeftModel, PeftConfig
 
 
 
 
 
 
5
 
6
  # Load the model and tokenizer
7
  base_model_name = "meta-llama/Llama-3.2-1B"
8
  fine_tuned_model_path = "./gross_llama" # Path to your fine-tuned model
9
 
10
- tokenizer = AutoTokenizer.from_pretrained(base_model_name)
11
- base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
12
- peft_model = PeftModel.from_pretrained(base_model, fine_tuned_model_path)
 
13
 
14
  peft_model.to("cuda")
15
  peft_model.eval()
@@ -25,27 +33,18 @@ Sign Language Translator for converting sentences to Gloss. Glosses are written
25
  ### Response:
26
  """
27
 
28
- import re
29
-
30
  def translate_to_gloss(input_text):
31
- inputs = tokenizer(
32
- [tinyllama_prompt.format(input_text)],
33
- return_tensors="pt"
34
- ).to("cuda")
35
-
36
  with torch.no_grad():
37
  outputs = peft_model.generate(**inputs, max_new_tokens=64, use_cache=True)
38
-
39
  decoded_output = tokenizer.batch_decode(outputs)[0]
40
 
41
  # Extract the response part
42
  response_start = decoded_output.find("### Response")
43
  if response_start != -1:
44
  response = decoded_output[response_start + len("### Response"):].strip()
45
-
46
  # Remove any remaining prompt parts
47
  response = re.sub(r'###.*$', '', response, flags=re.DOTALL).strip()
48
-
49
  # Remove any non-gloss text (assuming gloss is in all caps)
50
  gloss_parts = re.findall(r'\b[A-Z]+(?:\s+[A-Z]+)*\b', response)
51
  gloss = ' '.join(gloss_parts)
 
1
+ import os
2
  import gradio as gr
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
  from peft import PeftModel, PeftConfig
6
+ import re
7
+
8
+ # Securely get the Hugging Face token
9
+ hf_token = os.environ.get("HUGGINGFACE_TOKEN")
10
+ if not hf_token:
11
+ raise ValueError("HUGGINGFACE_TOKEN not found in environment variables")
12
 
13
  # Load the model and tokenizer
14
  base_model_name = "meta-llama/Llama-3.2-1B"
15
  fine_tuned_model_path = "./gross_llama" # Path to your fine-tuned model
16
 
17
+ # Use the token for authentication
18
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=hf_token)
19
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, token=hf_token)
20
+ peft_model = PeftModel.from_pretrained(base_model, fine_tuned_model_path, token=hf_token)
21
 
22
  peft_model.to("cuda")
23
  peft_model.eval()
 
33
  ### Response:
34
  """
35
 
 
 
36
  def translate_to_gloss(input_text):
37
+ inputs = tokenizer([tinyllama_prompt.format(input_text)], return_tensors="pt").to("cuda")
 
 
 
 
38
  with torch.no_grad():
39
  outputs = peft_model.generate(**inputs, max_new_tokens=64, use_cache=True)
 
40
  decoded_output = tokenizer.batch_decode(outputs)[0]
41
 
42
  # Extract the response part
43
  response_start = decoded_output.find("### Response")
44
  if response_start != -1:
45
  response = decoded_output[response_start + len("### Response"):].strip()
 
46
  # Remove any remaining prompt parts
47
  response = re.sub(r'###.*$', '', response, flags=re.DOTALL).strip()
 
48
  # Remove any non-gloss text (assuming gloss is in all caps)
49
  gloss_parts = re.findall(r'\b[A-Z]+(?:\s+[A-Z]+)*\b', response)
50
  gloss = ' '.join(gloss_parts)