Spaces:
Running
Running
initial trial
Browse files- .DS_Store +0 -0
- app.py +299 -0
- models/mobileNet.tflite +3 -0
- models/resNet.tflite +3 -0
- requirements.txt +10 -0
- tools/__init__.py +0 -0
- tools/__pycache__/__init__.cpython-38.pyc +0 -0
- tools/__pycache__/alignment.cpython-38.pyc +0 -0
- tools/__pycache__/annotation.cpython-38.pyc +0 -0
- tools/__pycache__/detection.cpython-38.pyc +0 -0
- tools/__pycache__/identification.cpython-38.pyc +0 -0
- tools/__pycache__/normalization.cpython-38.pyc +0 -0
- tools/__pycache__/recognition.cpython-38.pyc +0 -0
- tools/__pycache__/utils.cpython-38.pyc +0 -0
- tools/__pycache__/webcam.cpython-38.pyc +0 -0
- tools/alignment.py +39 -0
- tools/annotation.py +121 -0
- tools/detection.py +44 -0
- tools/identification.py +47 -0
- tools/utils.py +66 -0
- tools/webcam.py +23 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit_toggle as tog
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from tools.annotation import draw_mesh, draw_landmarks, draw_bounding_box, draw_text
|
7 |
+
from tools.alignment import align_faces
|
8 |
+
from tools.identification import load_identification_model, inference, identify
|
9 |
+
from tools.utils import show_images, show_faces, rgb
|
10 |
+
from tools.detection import load_detection_model, detect_faces
|
11 |
+
from tools.webcam import init_webcam
|
12 |
+
import logging
|
13 |
+
|
14 |
+
|
15 |
+
# Set logging level to error (To avoid getting spammed by queue warnings etc.)
|
16 |
+
logging.basicConfig(level=logging.ERROR)
|
17 |
+
|
18 |
+
|
19 |
+
# Set page layout for streamlit to wide
|
20 |
+
st.set_page_config(layout="wide")
|
21 |
+
|
22 |
+
|
23 |
+
# Initialize the Face Detection and Identification Models
|
24 |
+
detection_model = load_detection_model(max_faces=2, detection_confidence=0.5, tracking_confidence=0.9)
|
25 |
+
identification_model = load_identification_model(name="MobileNet")
|
26 |
+
|
27 |
+
|
28 |
+
# Gallery Processing
|
29 |
+
@st.cache_data
|
30 |
+
def gallery_processing(gallery_files):
|
31 |
+
"""Process the gallery images (Complete Face Recognition Pipeline)
|
32 |
+
|
33 |
+
Args:
|
34 |
+
gallery_files (_type_): Files uploaded by the user
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
_type_: Gallery Images, Gallery Embeddings, Gallery Names
|
38 |
+
"""
|
39 |
+
gallery_images, gallery_embs, gallery_names = [], [], []
|
40 |
+
if gallery_files is not None:
|
41 |
+
for file in gallery_files:
|
42 |
+
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
|
43 |
+
img = cv2.cvtColor(
|
44 |
+
cv2.imdecode(file_bytes, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
|
45 |
+
)
|
46 |
+
gallery_names.append(
|
47 |
+
file.name.split(".jpg")[0].split(".png")[0].split(".jpeg")[0]
|
48 |
+
)
|
49 |
+
detections = detect_faces(img, detection_model)
|
50 |
+
aligned_faces = align_faces(img, np.asarray([detections[0]]))
|
51 |
+
gallery_images.append(aligned_faces[0])
|
52 |
+
gallery_embs.append(inference(aligned_faces, identification_model)[0])
|
53 |
+
return gallery_images, gallery_embs, gallery_names
|
54 |
+
|
55 |
+
|
56 |
+
class SideBar:
|
57 |
+
"""A class to handle the sidebar
|
58 |
+
"""
|
59 |
+
def __init__(self):
|
60 |
+
with st.sidebar:
|
61 |
+
st.markdown("# Preferences")
|
62 |
+
self.on_face_recognition = tog.st_toggle_switch(
|
63 |
+
"Face Recognition", key="activate_face_rec", default_value=True, active_color=rgb(255, 75, 75), track_color=rgb(50, 50, 50)
|
64 |
+
)
|
65 |
+
|
66 |
+
st.markdown("---")
|
67 |
+
|
68 |
+
st.markdown("## Webcam")
|
69 |
+
self.resolution = st.selectbox(
|
70 |
+
"Webcam Resolution",
|
71 |
+
[(1920, 1080), (1280, 720), (640, 360)],
|
72 |
+
index=2,
|
73 |
+
)
|
74 |
+
st.markdown("To change webcam resolution: Please refresh page and select resolution before starting webcam stream.")
|
75 |
+
|
76 |
+
st.markdown("---")
|
77 |
+
st.markdown("## Face Detection")
|
78 |
+
self.max_faces = st.number_input(
|
79 |
+
"Maximum Number of Faces", value=2, min_value=1
|
80 |
+
)
|
81 |
+
self.detection_confidence = st.slider(
|
82 |
+
"Min Detection Confidence", min_value=0.0, max_value=1.0, value=0.5
|
83 |
+
)
|
84 |
+
self.tracking_confidence = st.slider(
|
85 |
+
"Min Tracking Confidence", min_value=0.0, max_value=1.0, value=0.9
|
86 |
+
)
|
87 |
+
switch1, switch2 = st.columns(2)
|
88 |
+
with switch1:
|
89 |
+
self.on_bounding_box = tog.st_toggle_switch(
|
90 |
+
"Show Bounding Box", key="show_bounding_box", default_value=True, active_color=rgb(255, 75, 75), track_color=rgb(50, 50, 50)
|
91 |
+
)
|
92 |
+
with switch2:
|
93 |
+
self.on_five_landmarks = tog.st_toggle_switch(
|
94 |
+
"Show Five Landmarks", key="show_five_landmarks", default_value=True, active_color=rgb(255, 75, 75),
|
95 |
+
track_color=rgb(50, 50, 50)
|
96 |
+
)
|
97 |
+
switch3, switch4 = st.columns(2)
|
98 |
+
with switch3:
|
99 |
+
self.on_mesh = tog.st_toggle_switch(
|
100 |
+
"Show Mesh", key="show_mesh", default_value=True, active_color=rgb(255, 75, 75),
|
101 |
+
track_color=rgb(50, 50, 50)
|
102 |
+
)
|
103 |
+
with switch4:
|
104 |
+
self.on_text = tog.st_toggle_switch(
|
105 |
+
"Show Text", key="show_text", default_value=True, active_color=rgb(255, 75, 75),
|
106 |
+
track_color=rgb(50, 50, 50)
|
107 |
+
)
|
108 |
+
st.markdown("---")
|
109 |
+
|
110 |
+
st.markdown("## Face Recognition")
|
111 |
+
self.similarity_threshold = st.slider(
|
112 |
+
"Similarity Threshold", min_value=0.0, max_value=2.0, value=0.67
|
113 |
+
)
|
114 |
+
|
115 |
+
self.on_show_faces = tog.st_toggle_switch(
|
116 |
+
"Show Recognized Faces", key="show_recognized_faces", default_value=True, active_color=rgb(255, 75, 75), track_color=rgb(50, 50, 50)
|
117 |
+
)
|
118 |
+
|
119 |
+
self.model_name = st.selectbox(
|
120 |
+
"Model",
|
121 |
+
["MobileNet", "ResNet"],
|
122 |
+
index=0,
|
123 |
+
)
|
124 |
+
st.markdown("---")
|
125 |
+
|
126 |
+
st.markdown("## Gallery")
|
127 |
+
self.uploaded_files = st.file_uploader(
|
128 |
+
"Choose multiple images to upload", accept_multiple_files=True
|
129 |
+
)
|
130 |
+
|
131 |
+
self.gallery_images, self.gallery_embs, self.gallery_names= gallery_processing(self.uploaded_files)
|
132 |
+
|
133 |
+
st.markdown("**Gallery Faces**")
|
134 |
+
show_images(self.gallery_images, self.gallery_names, 3)
|
135 |
+
st.markdown("---")
|
136 |
+
|
137 |
+
|
138 |
+
class KPI:
|
139 |
+
"""Class for displaying KPIs in a row
|
140 |
+
Args:
|
141 |
+
keys (list): List of KPI names
|
142 |
+
"""
|
143 |
+
def __init__(self, keys):
|
144 |
+
self.kpi_texts = []
|
145 |
+
row = st.columns(len(keys))
|
146 |
+
for kpi, key in zip(row, keys):
|
147 |
+
with kpi:
|
148 |
+
item_row = st.columns(2)
|
149 |
+
item_row[0].markdown(f"**{key}**:")
|
150 |
+
self.kpi_texts.append(item_row[1].markdown("-"))
|
151 |
+
|
152 |
+
def update_kpi(self, kpi_values):
|
153 |
+
for kpi_text, kpi_value in zip(self.kpi_texts, kpi_values):
|
154 |
+
kpi_text.write(
|
155 |
+
f"<h5 style='text-align: center; color: red;'>{kpi_value:.2f}</h5>"
|
156 |
+
if isinstance(kpi_value, float)
|
157 |
+
else f"<h5 style='text-align: center; color: red;'>{kpi_value}</h5>",
|
158 |
+
unsafe_allow_html=True,
|
159 |
+
)
|
160 |
+
|
161 |
+
# -----------------------------------------------------------------------------------------------
|
162 |
+
# Streamlit App
|
163 |
+
st.title("FaceID App Demonstration")
|
164 |
+
|
165 |
+
# Sidebar
|
166 |
+
sb = SideBar()
|
167 |
+
|
168 |
+
# Get Access to Webcam
|
169 |
+
webcam = init_webcam(width=sb.resolution[0])
|
170 |
+
|
171 |
+
# KPI Section
|
172 |
+
st.markdown("**Stats**")
|
173 |
+
kpi = KPI([
|
174 |
+
"**FrameRate**",
|
175 |
+
"**Detected Faces**",
|
176 |
+
"**Image Dims**",
|
177 |
+
"**Detection [ms]**",
|
178 |
+
"**Normalization [ms]**",
|
179 |
+
"**Inference [ms]**",
|
180 |
+
"**Recognition [ms]**",
|
181 |
+
"**Annotations [ms]**",
|
182 |
+
"**Show Faces [ms]**",
|
183 |
+
])
|
184 |
+
st.markdown("---")
|
185 |
+
|
186 |
+
# Live Stream Display
|
187 |
+
stream_display = st.empty()
|
188 |
+
st.markdown("---")
|
189 |
+
|
190 |
+
# Display Detected Faces
|
191 |
+
st.markdown("**Detected Faces**")
|
192 |
+
face_window = st.empty()
|
193 |
+
st.markdown("---")
|
194 |
+
|
195 |
+
|
196 |
+
if webcam:
|
197 |
+
prevTime = 0
|
198 |
+
while True:
|
199 |
+
# Init times to "-" to show something if face recognition is turned off
|
200 |
+
time_detection = "-"
|
201 |
+
time_alignment = "-"
|
202 |
+
time_inference = "-"
|
203 |
+
time_identification = "-"
|
204 |
+
time_annotations = "-"
|
205 |
+
time_show_faces = "-"
|
206 |
+
|
207 |
+
try:
|
208 |
+
# Get Frame from Webcam
|
209 |
+
frame = webcam.get_frame(timeout=1)
|
210 |
+
|
211 |
+
# Convert to OpenCV Image
|
212 |
+
frame = frame.to_ndarray(format="rgb24")
|
213 |
+
except:
|
214 |
+
continue
|
215 |
+
|
216 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
217 |
+
# FACE RECOGNITION PIPELINE
|
218 |
+
if sb.on_face_recognition:
|
219 |
+
# FACE DETECTION ---------------------------------------------------------
|
220 |
+
start_time = time.time()
|
221 |
+
detections = detect_faces(frame, detection_model)
|
222 |
+
time_detection = (time.time() - start_time) * 1000
|
223 |
+
|
224 |
+
# FACE ALIGNMENT ---------------------------------------------------------
|
225 |
+
start_time = time.time()
|
226 |
+
aligned_faces = align_faces(frame, detections)
|
227 |
+
time_alignment = (time.time() - start_time) * 1000
|
228 |
+
|
229 |
+
# INFERENCE --------------------------------------------------------------
|
230 |
+
start_time = time.time()
|
231 |
+
if len(sb.gallery_embs) > 0:
|
232 |
+
faces_embs = inference(aligned_faces, identification_model)
|
233 |
+
else:
|
234 |
+
faces_embs = []
|
235 |
+
time_inference = (time.time() - start_time) * 1000
|
236 |
+
|
237 |
+
# FACE IDENTIFCATION -----------------------------------------------------
|
238 |
+
start_time = time.time()
|
239 |
+
if len(faces_embs) > 0 and len(sb.gallery_embs) > 0:
|
240 |
+
ident_names, ident_dists, ident_imgs = identify(faces_embs, sb.gallery_embs, sb.gallery_names, sb.gallery_images, thresh=sb.similarity_threshold)
|
241 |
+
else:
|
242 |
+
ident_names, ident_dists, ident_imgs = [], [], []
|
243 |
+
time_identification = (time.time() - start_time) * 1000
|
244 |
+
|
245 |
+
# ANNOTATIONS ------------------------------------------------------------
|
246 |
+
start_time = time.time()
|
247 |
+
frame = cv2.resize(frame, (1920, 1080)) # to make annotation in HD
|
248 |
+
frame.flags.writeable = True # (hack to make annotations faster)
|
249 |
+
if sb.on_mesh:
|
250 |
+
frame = draw_mesh(frame, detections)
|
251 |
+
if sb.on_five_landmarks:
|
252 |
+
frame = draw_landmarks(frame, detections)
|
253 |
+
if sb.on_bounding_box:
|
254 |
+
frame = draw_bounding_box(frame, detections, ident_names)
|
255 |
+
if sb.on_text:
|
256 |
+
frame = draw_text(frame, detections, ident_names)
|
257 |
+
time_annotations = (time.time() - start_time) * 1000
|
258 |
+
|
259 |
+
# DISPLAY DETECTED FACES -------------------------------------------------
|
260 |
+
start_time = time.time()
|
261 |
+
if sb.on_show_faces:
|
262 |
+
show_faces(
|
263 |
+
aligned_faces,
|
264 |
+
ident_names,
|
265 |
+
ident_dists,
|
266 |
+
ident_imgs,
|
267 |
+
num_cols=3,
|
268 |
+
channels="RGB",
|
269 |
+
display=face_window,
|
270 |
+
)
|
271 |
+
time_show_faces = (time.time() - start_time) * 1000
|
272 |
+
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
# DISPLAY THE LIVE STREAM --------------------------------------------------
|
277 |
+
stream_display.image(
|
278 |
+
frame, channels="RGB", caption="Live-Stream", use_column_width=True
|
279 |
+
)
|
280 |
+
|
281 |
+
# CALCULATE FPS -----------------------------------------------------------
|
282 |
+
currTime = time.time()
|
283 |
+
fps = 1 / (currTime - prevTime)
|
284 |
+
prevTime = currTime
|
285 |
+
|
286 |
+
# UPDATE KPIS -------------------------------------------------------------
|
287 |
+
kpi.update_kpi(
|
288 |
+
[
|
289 |
+
fps,
|
290 |
+
len(detections),
|
291 |
+
sb.resolution,
|
292 |
+
time_detection,
|
293 |
+
time_alignment,
|
294 |
+
time_inference,
|
295 |
+
time_identification,
|
296 |
+
time_annotations,
|
297 |
+
time_show_faces,
|
298 |
+
]
|
299 |
+
)
|
models/mobileNet.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c19b789f661caa8da735566490bfd8895beffb2a1ec97a56b126f0539991aa6
|
3 |
+
size 8210384
|
models/resNet.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4d8b0194957a3ad766135505fc70a91343660151a8103bbb6c3b8ac34dbb4e2
|
3 |
+
size 40946048
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
scikit-image
|
3 |
+
scikit-learn
|
4 |
+
mediapipe
|
5 |
+
opencv-python-headless
|
6 |
+
watchdog
|
7 |
+
streamlit-webrtc
|
8 |
+
matplotlib
|
9 |
+
streamlit-toggle-switch
|
10 |
+
tflite-runtime
|
tools/__init__.py
ADDED
File without changes
|
tools/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (155 Bytes). View file
|
|
tools/__pycache__/alignment.cpython-38.pyc
ADDED
Binary file (1.38 kB). View file
|
|
tools/__pycache__/annotation.cpython-38.pyc
ADDED
Binary file (2.83 kB). View file
|
|
tools/__pycache__/detection.cpython-38.pyc
ADDED
Binary file (1.5 kB). View file
|
|
tools/__pycache__/identification.cpython-38.pyc
ADDED
Binary file (1.68 kB). View file
|
|
tools/__pycache__/normalization.cpython-38.pyc
ADDED
Binary file (1.64 kB). View file
|
|
tools/__pycache__/recognition.cpython-38.pyc
ADDED
Binary file (2.52 kB). View file
|
|
tools/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (1.55 kB). View file
|
|
tools/__pycache__/webcam.cpython-38.pyc
ADDED
Binary file (686 Bytes). View file
|
|
tools/alignment.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from skimage.transform import SimilarityTransform
|
4 |
+
|
5 |
+
|
6 |
+
FIVE_LANDMARKS = [470, 475, 1, 57, 287]
|
7 |
+
|
8 |
+
|
9 |
+
def align(img, landmarks, target_size=(112, 112)):
|
10 |
+
dst = np.array(
|
11 |
+
[
|
12 |
+
[
|
13 |
+
landmarks.landmark[i].x * img.shape[1],
|
14 |
+
landmarks.landmark[i].y * img.shape[0],
|
15 |
+
]
|
16 |
+
for i in FIVE_LANDMARKS
|
17 |
+
],
|
18 |
+
)
|
19 |
+
|
20 |
+
src = np.array(
|
21 |
+
[
|
22 |
+
[38.2946, 51.6963],
|
23 |
+
[73.5318, 51.5014],
|
24 |
+
[56.0252, 71.7366],
|
25 |
+
[41.5493, 92.3655],
|
26 |
+
[70.7299, 92.2041],
|
27 |
+
],
|
28 |
+
dtype=np.float32,
|
29 |
+
)
|
30 |
+
tform = SimilarityTransform()
|
31 |
+
tform.estimate(dst, src)
|
32 |
+
tmatrix = tform.params[0:2, :]
|
33 |
+
return cv2.warpAffine(img, tmatrix, target_size, borderValue=0.0)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
def align_faces(img, detections):
|
38 |
+
aligned_faces = [align(img, detection.multi_face_landmarks) for detection in detections]
|
39 |
+
return aligned_faces
|
tools/annotation.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import mediapipe as mp
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
|
6 |
+
FIVE_LANDMARKS = [470, 475, 1, 57, 287]
|
7 |
+
FACE_CONNECTIONS = mp.solutions.face_mesh_connections.FACEMESH_TESSELATION
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def draw_bounding_box(img, detections, ident_names, margin=10):
|
12 |
+
# Draw the bounding box on the original frame
|
13 |
+
for detection, name in zip(detections, ident_names):
|
14 |
+
|
15 |
+
color = (255, 0, 0) if name == "Unknown" else (0, 255, 0)
|
16 |
+
|
17 |
+
x_coords = [
|
18 |
+
landmark.x * img.shape[1] for landmark in detection.multi_face_landmarks.landmark
|
19 |
+
]
|
20 |
+
y_coords = [
|
21 |
+
landmark.y * img.shape[0] for landmark in detection.multi_face_landmarks.landmark
|
22 |
+
]
|
23 |
+
|
24 |
+
x_min, x_max = int(min(x_coords) - margin), int(max(x_coords) + margin)
|
25 |
+
y_min, y_max = int(min(y_coords) - margin), int(max(y_coords) + margin)
|
26 |
+
|
27 |
+
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color, 2)
|
28 |
+
cv2.rectangle(img, (x_min, y_min - img.shape[0] // 25), (x_max, y_min), color, -1)
|
29 |
+
|
30 |
+
return img
|
31 |
+
|
32 |
+
|
33 |
+
def draw_text(
|
34 |
+
img,
|
35 |
+
detections,
|
36 |
+
ident_names,
|
37 |
+
margin=10,
|
38 |
+
font_scale=1,
|
39 |
+
font_color=(0, 0, 0),
|
40 |
+
font=cv2.FONT_HERSHEY_SIMPLEX,
|
41 |
+
):
|
42 |
+
|
43 |
+
font_scale = img.shape[0] / 1000
|
44 |
+
for detection, name in zip(detections, ident_names):
|
45 |
+
x_coords = [
|
46 |
+
landmark.x * img.shape[1] for landmark in detection.multi_face_landmarks.landmark
|
47 |
+
]
|
48 |
+
y_coords = [
|
49 |
+
landmark.y * img.shape[0] for landmark in detection.multi_face_landmarks.landmark
|
50 |
+
]
|
51 |
+
|
52 |
+
x_min = int(min(x_coords) - margin)
|
53 |
+
y_min = int(min(y_coords) - margin)
|
54 |
+
|
55 |
+
cv2.putText(
|
56 |
+
img,
|
57 |
+
name,
|
58 |
+
(x_min + img.shape[0] // 400, y_min - img.shape[0] // 100),
|
59 |
+
font,
|
60 |
+
font_scale,
|
61 |
+
font_color,
|
62 |
+
2,
|
63 |
+
)
|
64 |
+
|
65 |
+
return img
|
66 |
+
|
67 |
+
|
68 |
+
def draw_mesh(img, detections):
|
69 |
+
for detection in detections:
|
70 |
+
# Draw the connections
|
71 |
+
for connection in FACE_CONNECTIONS:
|
72 |
+
cv2.line(
|
73 |
+
img,
|
74 |
+
(
|
75 |
+
int(detection.multi_face_landmarks.landmark[connection[0]].x * img.shape[1]),
|
76 |
+
int(detection.multi_face_landmarks.landmark[connection[0]].y * img.shape[0]),
|
77 |
+
),
|
78 |
+
(
|
79 |
+
int(detection.multi_face_landmarks.landmark[connection[1]].x * img.shape[1]),
|
80 |
+
int(detection.multi_face_landmarks.landmark[connection[1]].y * img.shape[0]),
|
81 |
+
),
|
82 |
+
(255, 255, 255),
|
83 |
+
1,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Draw the landmarks
|
87 |
+
for points in detection.multi_face_landmarks.landmark:
|
88 |
+
cv2.circle(
|
89 |
+
img,
|
90 |
+
(
|
91 |
+
int(points.x * img.shape[1]),
|
92 |
+
int(points.y * img.shape[0]),
|
93 |
+
),
|
94 |
+
1,
|
95 |
+
(0, 255, 0),
|
96 |
+
-1,
|
97 |
+
)
|
98 |
+
return img
|
99 |
+
|
100 |
+
|
101 |
+
def draw_landmarks(img, detections):
|
102 |
+
# Draw the face landmarks on the original frame
|
103 |
+
for points in FIVE_LANDMARKS:
|
104 |
+
for detection in detections:
|
105 |
+
cv2.circle(
|
106 |
+
img,
|
107 |
+
(
|
108 |
+
int(
|
109 |
+
detection.multi_face_landmarks.landmark[points].x
|
110 |
+
* img.shape[1]
|
111 |
+
),
|
112 |
+
int(
|
113 |
+
detection.multi_face_landmarks.landmark[points].y
|
114 |
+
* img.shape[0]
|
115 |
+
),
|
116 |
+
),
|
117 |
+
5,
|
118 |
+
(0, 0, 255),
|
119 |
+
-1,
|
120 |
+
)
|
121 |
+
return img
|
tools/detection.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mediapipe as mp
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
|
5 |
+
class Detection:
|
6 |
+
multi_face_bboxes = []
|
7 |
+
multi_face_landmarks = []
|
8 |
+
|
9 |
+
|
10 |
+
#@st.cache_resource
|
11 |
+
def load_detection_model(max_faces=2, detection_confidence=0.5, tracking_confidence=0.5):
|
12 |
+
model = mp.solutions.face_mesh.FaceMesh(
|
13 |
+
refine_landmarks=True,
|
14 |
+
min_detection_confidence=detection_confidence,
|
15 |
+
min_tracking_confidence=tracking_confidence,
|
16 |
+
max_num_faces=max_faces,
|
17 |
+
)
|
18 |
+
return model
|
19 |
+
|
20 |
+
|
21 |
+
def detect_faces(frame, model):
|
22 |
+
|
23 |
+
# Process the frame with MediaPipe Face Mesh
|
24 |
+
results = model.process(frame)
|
25 |
+
|
26 |
+
# Get the Bounding Boxes from the detected faces
|
27 |
+
detections = []
|
28 |
+
if results.multi_face_landmarks:
|
29 |
+
for landmarks in results.multi_face_landmarks:
|
30 |
+
x_coords = [
|
31 |
+
landmark.x * frame.shape[1] for landmark in landmarks.landmark
|
32 |
+
]
|
33 |
+
y_coords = [
|
34 |
+
landmark.y * frame.shape[0] for landmark in landmarks.landmark
|
35 |
+
]
|
36 |
+
|
37 |
+
x_min, x_max = int(min(x_coords)), int(max(x_coords))
|
38 |
+
y_min, y_max = int(min(y_coords)), int(max(y_coords))
|
39 |
+
|
40 |
+
detection = Detection()
|
41 |
+
detection.multi_face_bboxes=[x_min, y_min, x_max, y_max]
|
42 |
+
detection.multi_face_landmarks=landmarks
|
43 |
+
detections.append(detection)
|
44 |
+
return detections
|
tools/identification.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tflite_runtime.interpreter as tflite
|
3 |
+
from sklearn.metrics.pairwise import cosine_distances
|
4 |
+
import streamlit as st
|
5 |
+
import time
|
6 |
+
|
7 |
+
|
8 |
+
MODEL_PATHS = {
|
9 |
+
"MobileNet": "./models/mobileNet.tflite",
|
10 |
+
"ResNet": "./models/resNet.tflite",
|
11 |
+
}
|
12 |
+
|
13 |
+
|
14 |
+
#@st.cache_resource
|
15 |
+
def load_identification_model(name="MobileNet"):
|
16 |
+
model = tflite.Interpreter(model_path=MODEL_PATHS[name])
|
17 |
+
return model
|
18 |
+
|
19 |
+
|
20 |
+
def inference(imgs, model):
|
21 |
+
if len(imgs) > 0:
|
22 |
+
imgs = np.asarray(imgs).astype(np.float32) / 255
|
23 |
+
model.resize_tensor_input(model.get_input_details()[0]["index"], imgs.shape)
|
24 |
+
model.allocate_tensors()
|
25 |
+
model.set_tensor(model.get_input_details()[0]["index"], imgs)
|
26 |
+
model.invoke()
|
27 |
+
embs = [model.get_tensor(elem["index"]) for elem in model.get_output_details()]
|
28 |
+
return embs[0]
|
29 |
+
else:
|
30 |
+
return []
|
31 |
+
|
32 |
+
|
33 |
+
def identify(embs_src, embs_gal, labels_gal, imgs_gal, thresh=None):
|
34 |
+
all_dists = cosine_distances(embs_src, embs_gal)
|
35 |
+
ident_names, ident_dists, ident_imgs = [], [], []
|
36 |
+
for dists in all_dists:
|
37 |
+
idx_min = np.argmin(dists)
|
38 |
+
if thresh and dists[idx_min] > thresh:
|
39 |
+
dist = dists[idx_min]
|
40 |
+
pred = None
|
41 |
+
else:
|
42 |
+
dist = dists[idx_min]
|
43 |
+
pred = idx_min
|
44 |
+
ident_names.append(labels_gal[pred] if pred is not None else "Unknown")
|
45 |
+
ident_dists.append(dist)
|
46 |
+
ident_imgs.append(imgs_gal[pred] if pred is not None else None)
|
47 |
+
return ident_names, ident_dists, ident_imgs
|
tools/utils.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
def rgb(r, g, b):
|
5 |
+
return '#{:02x}{:02x}{:02x}'.format(r, g, b)
|
6 |
+
|
7 |
+
|
8 |
+
def show_images(images, names, num_cols, channels="RGB"):
|
9 |
+
num_images = len(images)
|
10 |
+
|
11 |
+
# Calculate the number of rows and columns
|
12 |
+
num_rows = -(
|
13 |
+
-num_images // num_cols
|
14 |
+
) # This also handles the case when num_images is not a multiple of num_cols
|
15 |
+
|
16 |
+
for row in range(num_rows):
|
17 |
+
# Create the columns
|
18 |
+
cols = st.sidebar.columns(num_cols)
|
19 |
+
|
20 |
+
for i, col in enumerate(cols):
|
21 |
+
idx = row * num_cols + i
|
22 |
+
|
23 |
+
if idx < num_images:
|
24 |
+
img = images[idx]
|
25 |
+
if len(names) == 0:
|
26 |
+
names = ["Unknown"] * len(images)
|
27 |
+
name = names[idx]
|
28 |
+
col.image(img, caption=name, channels=channels, width=112)
|
29 |
+
|
30 |
+
|
31 |
+
def show_faces(images, names, distances, gal_images, num_cols, channels="RGB", display=st):
|
32 |
+
if len(images) == 0 or len(names) == 0:
|
33 |
+
display.write("No faces detected, or gallery empty!")
|
34 |
+
return
|
35 |
+
# Calculate the number of rows and columns
|
36 |
+
num_rows = -(
|
37 |
+
-len(images) // num_cols
|
38 |
+
) # This also handles the case when num_images is not a multiple of num_cols
|
39 |
+
|
40 |
+
for row in range(num_rows):
|
41 |
+
# Create the columns
|
42 |
+
cols = display.columns(num_cols)
|
43 |
+
|
44 |
+
for i, col in enumerate(cols):
|
45 |
+
idx = row * num_cols + i
|
46 |
+
|
47 |
+
if idx < len(images):
|
48 |
+
img = images[idx]
|
49 |
+
name = names[idx]
|
50 |
+
dist = distances[idx]
|
51 |
+
col.image(img, channels=channels, width=112)
|
52 |
+
|
53 |
+
if gal_images[idx] is not None:
|
54 |
+
col.text(" ⬍ matching ⬍")
|
55 |
+
col.image(gal_images[idx], caption=name, channels=channels, width=112)
|
56 |
+
else:
|
57 |
+
col.markdown("")
|
58 |
+
col.write("No match found")
|
59 |
+
col.markdown(
|
60 |
+
f"**Distance: {dist:.4f}**" if dist else f"**Distance: -**"
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
col.empty()
|
64 |
+
col.markdown("")
|
65 |
+
col.empty()
|
66 |
+
col.markdown("")
|
tools/webcam.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_webrtc import webrtc_streamer, WebRtcMode
|
3 |
+
|
4 |
+
|
5 |
+
@st.cache_resource(experimental_allow_widgets=True)
|
6 |
+
def init_webcam(width=680):
|
7 |
+
ctx = webrtc_streamer(
|
8 |
+
key="FaceIDAppDemo",
|
9 |
+
mode=WebRtcMode.SENDONLY,
|
10 |
+
media_stream_constraints={
|
11 |
+
"video": {
|
12 |
+
"width": {
|
13 |
+
"min": width,
|
14 |
+
"ideal": width,
|
15 |
+
"max": width,
|
16 |
+
},
|
17 |
+
},
|
18 |
+
"audio": False,
|
19 |
+
},
|
20 |
+
video_receiver_size=1,
|
21 |
+
async_processing=True,
|
22 |
+
)
|
23 |
+
return ctx.video_receiver
|