Spaces:
Sleeping
Sleeping
testing on hugging
Browse files- .DS_Store +0 -0
- models/.DS_Store +0 -0
- models/mobileNet.tflite +0 -3
- pyproject.toml +3 -0
- requirements.txt +3 -1
- tools/annotation.py +107 -0
- tools/face_detection.py +481 -0
- tools/face_recognition.py +101 -190
- tools/nametypes.py +16 -13
- tools/pca.py +59 -0
- tools/utils.py +77 -88
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
models/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
models/mobileNet.tflite
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6c19b789f661caa8da735566490bfd8895beffb2a1ec97a56b126f0539991aa6
|
3 |
-
size 8210384
|
|
|
|
|
|
|
|
pyproject.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[tool.black]
|
2 |
+
line-length = 120
|
3 |
+
target-version = ['py38']
|
requirements.txt
CHANGED
@@ -8,4 +8,6 @@ streamlit-webrtc
|
|
8 |
matplotlib
|
9 |
streamlit-toggle-switch
|
10 |
tflite-runtime
|
11 |
-
twilio
|
|
|
|
|
|
8 |
matplotlib
|
9 |
streamlit-toggle-switch
|
10 |
tflite-runtime
|
11 |
+
twilio
|
12 |
+
tqdm
|
13 |
+
plotly
|
tools/annotation.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
|
5 |
+
class Annotation:
|
6 |
+
def __init__(self, draw_bbox=True, draw_landmarks=True, draw_name=True, upscale=True):
|
7 |
+
self.bbox = draw_bbox
|
8 |
+
self.landmarks = draw_landmarks
|
9 |
+
self.name = draw_name
|
10 |
+
self.upscale = upscale
|
11 |
+
|
12 |
+
def __call__(self, frame, detections, identities, matches, gallery):
|
13 |
+
shape = np.asarray(frame.shape[:2][::-1])
|
14 |
+
if self.upscale:
|
15 |
+
frame = cv2.resize(frame, (1920, 1080))
|
16 |
+
upscale_factor = np.asarray([1920 / shape[0], 1080 / shape[1]])
|
17 |
+
shape = np.asarray(frame.shape[:2][::-1])
|
18 |
+
else:
|
19 |
+
upscale_factor = np.asarray([1, 1])
|
20 |
+
|
21 |
+
frame.flags.writeable = True
|
22 |
+
|
23 |
+
for detection in detections:
|
24 |
+
# Draw Landmarks
|
25 |
+
if self.landmarks:
|
26 |
+
for landmark in detection.landmarks:
|
27 |
+
cv2.circle(
|
28 |
+
frame,
|
29 |
+
(landmark * upscale_factor).astype(int),
|
30 |
+
2,
|
31 |
+
(255, 255, 255),
|
32 |
+
-1,
|
33 |
+
)
|
34 |
+
|
35 |
+
# Draw Bounding Box
|
36 |
+
if self.bbox:
|
37 |
+
cv2.rectangle(
|
38 |
+
frame,
|
39 |
+
(detection.bbox[0] * upscale_factor).astype(int),
|
40 |
+
(detection.bbox[1] * upscale_factor).astype(int),
|
41 |
+
(255, 0, 0),
|
42 |
+
2,
|
43 |
+
)
|
44 |
+
|
45 |
+
# Draw Index
|
46 |
+
cv2.putText(
|
47 |
+
frame,
|
48 |
+
str(detection.idx),
|
49 |
+
(
|
50 |
+
((detection.bbox[1][0] + 2) * upscale_factor[0]).astype(int),
|
51 |
+
((detection.bbox[1][1] + 2) * upscale_factor[1]).astype(int),
|
52 |
+
),
|
53 |
+
cv2.LINE_AA,
|
54 |
+
0.5,
|
55 |
+
(0, 0, 0),
|
56 |
+
2,
|
57 |
+
)
|
58 |
+
|
59 |
+
# Draw Name
|
60 |
+
if self.name:
|
61 |
+
for match in matches:
|
62 |
+
try:
|
63 |
+
detection = detections[identities[match.identity_idx].detection_idx]
|
64 |
+
except:
|
65 |
+
print("Identity IDX: ", match.identity_idx)
|
66 |
+
print("Len(Detections): ", len(detections))
|
67 |
+
print("Len(Identites): ", len(identities))
|
68 |
+
print("Detection IDX: ", identities[match.identity_idx].detection_idx)
|
69 |
+
|
70 |
+
# print("Detections: ", detections)
|
71 |
+
|
72 |
+
cv2.rectangle(
|
73 |
+
frame,
|
74 |
+
(detection.bbox[0] * upscale_factor).astype(int),
|
75 |
+
(detection.bbox[1] * upscale_factor).astype(int),
|
76 |
+
(0, 255, 0),
|
77 |
+
2,
|
78 |
+
)
|
79 |
+
|
80 |
+
cv2.rectangle(
|
81 |
+
frame,
|
82 |
+
(
|
83 |
+
(detection.bbox[0][0] * upscale_factor[0]).astype(int),
|
84 |
+
(detection.bbox[0][1] * upscale_factor[1] - (shape[1] // 25)).astype(int),
|
85 |
+
),
|
86 |
+
(
|
87 |
+
(detection.bbox[1][0] * upscale_factor[0]).astype(int),
|
88 |
+
(detection.bbox[0][1] * upscale_factor[1]).astype(int),
|
89 |
+
),
|
90 |
+
(255, 255, 255),
|
91 |
+
-1,
|
92 |
+
)
|
93 |
+
|
94 |
+
cv2.putText(
|
95 |
+
frame,
|
96 |
+
gallery[match.gallery_idx].name,
|
97 |
+
(
|
98 |
+
((detection.bbox[0][0] + shape[0] // 400) * upscale_factor[0]).astype(int),
|
99 |
+
((detection.bbox[0][1] - shape[1] // 100) * upscale_factor[1]).astype(int),
|
100 |
+
),
|
101 |
+
cv2.LINE_AA,
|
102 |
+
0.5,
|
103 |
+
(0, 0, 0),
|
104 |
+
2,
|
105 |
+
)
|
106 |
+
|
107 |
+
return frame
|
tools/face_detection.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tflite_runtime.interpreter as tflite
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from .utils import tflite_inference
|
5 |
+
from .nametypes import Detection
|
6 |
+
from .utils import get_file
|
7 |
+
|
8 |
+
|
9 |
+
BASE_URL = "https://github.com/Martlgap/FaceIDLight/releases/download/v.0.1/"
|
10 |
+
|
11 |
+
FILE_HASHES = {
|
12 |
+
"o_net": "768385d570300648b7b881acbd418146522b79b4771029bb2e684bdd8c764b9f",
|
13 |
+
"p_net": "530183192e24f7cc86b6706e1eb600482c4ed4306399ac939c472e3957bae15e",
|
14 |
+
"r_net": "5ec33b065eb2802bc4c2575d21feff1a56958d854785bc3e2907d3b7ace861a2",
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
class StageStatus:
|
19 |
+
"""
|
20 |
+
Keeps status between MTCNN stages
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, pad_result: tuple = None, width=0, height=0):
|
24 |
+
self.width = width
|
25 |
+
self.height = height
|
26 |
+
self.dy = self.edy = self.dx = self.edx = self.y = self.ey = self.x = self.ex = self.tmp_w = self.tmp_h = []
|
27 |
+
|
28 |
+
if pad_result is not None:
|
29 |
+
self.update(pad_result)
|
30 |
+
|
31 |
+
def update(self, pad_result: tuple):
|
32 |
+
s = self
|
33 |
+
s.dy, s.edy, s.dx, s.edx, s.y, s.ey, s.x, s.ex, s.tmp_w, s.tmp_h = pad_result
|
34 |
+
|
35 |
+
|
36 |
+
class FaceDetection:
|
37 |
+
"""
|
38 |
+
Allows to perform MTCNN Detection ->
|
39 |
+
a) Detection of faces (with the confidence probability)
|
40 |
+
b) Detection of keypoints (left eye, right eye, nose, mouth_left, mouth_right)
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
min_face_size: int = 40,
|
46 |
+
steps_threshold: list = None,
|
47 |
+
scale_factor: float = 0.7,
|
48 |
+
min_detections_conf: float = 0.9,
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Initializes the MTCNN.
|
52 |
+
:param min_face_size: minimum size of the face to detect
|
53 |
+
:param steps_threshold: step's thresholds values
|
54 |
+
:param scale_factor: scale factor
|
55 |
+
"""
|
56 |
+
if steps_threshold is None:
|
57 |
+
steps_threshold = [0.6, 0.7, 0.7] # original mtcnn values [0.6, 0.7, 0.7]
|
58 |
+
self._min_face_size = min_face_size
|
59 |
+
self._steps_threshold = steps_threshold
|
60 |
+
self._scale_factor = scale_factor
|
61 |
+
self.min_detections_conf = min_detections_conf
|
62 |
+
self.p_net = tflite.Interpreter(model_path=get_file(BASE_URL + "p_net.tflite", FILE_HASHES["p_net"]))
|
63 |
+
self.r_net = tflite.Interpreter(model_path=get_file(BASE_URL + "r_net.tflite", FILE_HASHES["r_net"]))
|
64 |
+
self.o_net = tflite.Interpreter(model_path=get_file(BASE_URL + "o_net.tflite", FILE_HASHES["o_net"]))
|
65 |
+
|
66 |
+
def __call__(self, frame):
|
67 |
+
"""
|
68 |
+
Detects bounding boxes from the specified image.
|
69 |
+
:param img: image to process
|
70 |
+
:return: list containing all the bounding boxes detected with their keypoints.
|
71 |
+
|
72 |
+
From MTCNN:
|
73 |
+
# Total boxes (bBoxes for faces)
|
74 |
+
# 1. dim -> Number of found Faces
|
75 |
+
# 2. dim -> x_min, y_min, x_max, y_max, score
|
76 |
+
|
77 |
+
# Points (Landmarks left eye, right eye, nose, left mouth, right mouth)
|
78 |
+
# 1. dim -> Number of found Faces
|
79 |
+
# 2. dim -> x1, x2, x3, x4, x5, y2, y2, y3, y4, y5 Coordinates
|
80 |
+
"""
|
81 |
+
|
82 |
+
height, width, _ = frame.shape
|
83 |
+
stage_status = StageStatus(width=width, height=height)
|
84 |
+
m = 12 / self._min_face_size
|
85 |
+
min_layer = np.amin([height, width]) * m
|
86 |
+
scales = self.__compute_scale_pyramid(m, min_layer)
|
87 |
+
|
88 |
+
# We pipe here each of the stages
|
89 |
+
total_boxes, stage_status = self.__stage1(frame, scales, stage_status)
|
90 |
+
total_boxes, stage_status = self.__stage2(frame, total_boxes, stage_status)
|
91 |
+
bboxes, points = self.__stage3(frame, total_boxes, stage_status)
|
92 |
+
|
93 |
+
# Sort by location (to prevent flickering)
|
94 |
+
sort_idx = np.argsort(bboxes[:, 0])
|
95 |
+
bboxes = bboxes[sort_idx]
|
96 |
+
points = points[sort_idx]
|
97 |
+
|
98 |
+
# Transform to better shape and points now inside bbox
|
99 |
+
detections = []
|
100 |
+
cnt = 0
|
101 |
+
for i in range(bboxes.shape[0]):
|
102 |
+
conf = bboxes[i, -1].astype(np.float32)
|
103 |
+
if conf > self.min_detections_conf:
|
104 |
+
bboxes_c = np.reshape(bboxes[i, :-1], [2, 2]).astype(np.float32)
|
105 |
+
points_c = np.reshape(points[i], [2, 5]).transpose().astype(np.float32)
|
106 |
+
detections.append(
|
107 |
+
Detection(
|
108 |
+
idx=cnt,
|
109 |
+
bbox=list(bboxes_c),
|
110 |
+
landmarks=list(points_c),
|
111 |
+
confidence=conf,
|
112 |
+
)
|
113 |
+
)
|
114 |
+
cnt += 1
|
115 |
+
return frame, detections
|
116 |
+
|
117 |
+
def __compute_scale_pyramid(self, m, min_layer):
|
118 |
+
scales = []
|
119 |
+
factor_count = 0
|
120 |
+
|
121 |
+
while min_layer >= 12:
|
122 |
+
scales += [m * np.power(self._scale_factor, factor_count)]
|
123 |
+
min_layer = min_layer * self._scale_factor
|
124 |
+
factor_count += 1
|
125 |
+
|
126 |
+
return scales
|
127 |
+
|
128 |
+
@staticmethod
|
129 |
+
def __scale_image(image, scale: float):
|
130 |
+
"""
|
131 |
+
Scales the image to a given scale.
|
132 |
+
:param image:
|
133 |
+
:param scale:
|
134 |
+
:return:
|
135 |
+
"""
|
136 |
+
height, width, _ = image.shape
|
137 |
+
|
138 |
+
width_scaled = int(np.ceil(width * scale))
|
139 |
+
height_scaled = int(np.ceil(height * scale))
|
140 |
+
|
141 |
+
im_data = cv2.resize(image, (width_scaled, height_scaled), interpolation=cv2.INTER_AREA)
|
142 |
+
|
143 |
+
# Normalize the image's pixels
|
144 |
+
im_data_normalized = (im_data - 127.5) * 0.0078125
|
145 |
+
|
146 |
+
return im_data_normalized
|
147 |
+
|
148 |
+
@staticmethod
|
149 |
+
def __generate_bounding_box(imap, reg, scale, t):
|
150 |
+
# use heatmap to generate bounding boxes
|
151 |
+
stride = 2
|
152 |
+
cellsize = 12
|
153 |
+
|
154 |
+
imap = np.transpose(imap)
|
155 |
+
dx1 = np.transpose(reg[:, :, 0])
|
156 |
+
dy1 = np.transpose(reg[:, :, 1])
|
157 |
+
dx2 = np.transpose(reg[:, :, 2])
|
158 |
+
dy2 = np.transpose(reg[:, :, 3])
|
159 |
+
|
160 |
+
y, x = np.where(imap >= t)
|
161 |
+
|
162 |
+
if y.shape[0] == 1:
|
163 |
+
dx1 = np.flipud(dx1)
|
164 |
+
dy1 = np.flipud(dy1)
|
165 |
+
dx2 = np.flipud(dx2)
|
166 |
+
dy2 = np.flipud(dy2)
|
167 |
+
|
168 |
+
score = imap[(y, x)]
|
169 |
+
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
|
170 |
+
|
171 |
+
if reg.size == 0:
|
172 |
+
reg = np.empty(shape=(0, 3))
|
173 |
+
|
174 |
+
bb = np.transpose(np.vstack([y, x]))
|
175 |
+
|
176 |
+
q1 = np.fix((stride * bb + 1) / scale)
|
177 |
+
q2 = np.fix((stride * bb + cellsize) / scale)
|
178 |
+
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
|
179 |
+
|
180 |
+
return boundingbox, reg
|
181 |
+
|
182 |
+
@staticmethod
|
183 |
+
def __nms(boxes, threshold, method):
|
184 |
+
"""
|
185 |
+
Non Maximum Suppression.
|
186 |
+
|
187 |
+
:param boxes: np array with bounding boxes.
|
188 |
+
:param threshold:
|
189 |
+
:param method: NMS method to apply. Available values ('Min', 'Union')
|
190 |
+
:return:
|
191 |
+
"""
|
192 |
+
if boxes.size == 0:
|
193 |
+
return np.empty((0, 3))
|
194 |
+
|
195 |
+
x1 = boxes[:, 0]
|
196 |
+
y1 = boxes[:, 1]
|
197 |
+
x2 = boxes[:, 2]
|
198 |
+
y2 = boxes[:, 3]
|
199 |
+
s = boxes[:, 4]
|
200 |
+
|
201 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
202 |
+
sorted_s = np.argsort(s)
|
203 |
+
|
204 |
+
pick = np.zeros_like(s, dtype=np.int16)
|
205 |
+
counter = 0
|
206 |
+
while sorted_s.size > 0:
|
207 |
+
i = sorted_s[-1]
|
208 |
+
pick[counter] = i
|
209 |
+
counter += 1
|
210 |
+
idx = sorted_s[0:-1]
|
211 |
+
|
212 |
+
xx1 = np.maximum(x1[i], x1[idx])
|
213 |
+
yy1 = np.maximum(y1[i], y1[idx])
|
214 |
+
xx2 = np.minimum(x2[i], x2[idx])
|
215 |
+
yy2 = np.minimum(y2[i], y2[idx])
|
216 |
+
|
217 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
218 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
219 |
+
|
220 |
+
inter = w * h
|
221 |
+
|
222 |
+
if method == "Min":
|
223 |
+
o = inter / np.minimum(area[i], area[idx])
|
224 |
+
else:
|
225 |
+
o = inter / (area[i] + area[idx] - inter)
|
226 |
+
|
227 |
+
sorted_s = sorted_s[np.where(o <= threshold)]
|
228 |
+
|
229 |
+
pick = pick[0:counter]
|
230 |
+
|
231 |
+
return pick
|
232 |
+
|
233 |
+
@staticmethod
|
234 |
+
def __pad(total_boxes, w, h):
|
235 |
+
# compute the padding coordinates (pad the bounding boxes to square)
|
236 |
+
tmp_w = (total_boxes[:, 2] - total_boxes[:, 0] + 1).astype(np.int32)
|
237 |
+
tmp_h = (total_boxes[:, 3] - total_boxes[:, 1] + 1).astype(np.int32)
|
238 |
+
numbox = total_boxes.shape[0]
|
239 |
+
|
240 |
+
dx = np.ones(numbox, dtype=np.int32)
|
241 |
+
dy = np.ones(numbox, dtype=np.int32)
|
242 |
+
edx = tmp_w.copy().astype(np.int32)
|
243 |
+
edy = tmp_h.copy().astype(np.int32)
|
244 |
+
|
245 |
+
x = total_boxes[:, 0].copy().astype(np.int32)
|
246 |
+
y = total_boxes[:, 1].copy().astype(np.int32)
|
247 |
+
ex = total_boxes[:, 2].copy().astype(np.int32)
|
248 |
+
ey = total_boxes[:, 3].copy().astype(np.int32)
|
249 |
+
|
250 |
+
tmp = np.where(ex > w)
|
251 |
+
edx.flat[tmp] = np.expand_dims(-ex[tmp] + w + tmp_w[tmp], 1)
|
252 |
+
ex[tmp] = w
|
253 |
+
|
254 |
+
tmp = np.where(ey > h)
|
255 |
+
edy.flat[tmp] = np.expand_dims(-ey[tmp] + h + tmp_h[tmp], 1)
|
256 |
+
ey[tmp] = h
|
257 |
+
|
258 |
+
tmp = np.where(x < 1)
|
259 |
+
dx.flat[tmp] = np.expand_dims(2 - x[tmp], 1)
|
260 |
+
x[tmp] = 1
|
261 |
+
|
262 |
+
tmp = np.where(y < 1)
|
263 |
+
dy.flat[tmp] = np.expand_dims(2 - y[tmp], 1)
|
264 |
+
y[tmp] = 1
|
265 |
+
|
266 |
+
return dy, edy, dx, edx, y, ey, x, ex, tmp_w, tmp_h
|
267 |
+
|
268 |
+
@staticmethod
|
269 |
+
def __rerec(bbox):
|
270 |
+
# convert bbox to square
|
271 |
+
height = bbox[:, 3] - bbox[:, 1]
|
272 |
+
width = bbox[:, 2] - bbox[:, 0]
|
273 |
+
max_side_length = np.maximum(width, height)
|
274 |
+
bbox[:, 0] = bbox[:, 0] + width * 0.5 - max_side_length * 0.5
|
275 |
+
bbox[:, 1] = bbox[:, 1] + height * 0.5 - max_side_length * 0.5
|
276 |
+
bbox[:, 2:4] = bbox[:, 0:2] + np.transpose(np.tile(max_side_length, (2, 1)))
|
277 |
+
return bbox
|
278 |
+
|
279 |
+
@staticmethod
|
280 |
+
def __bbreg(boundingbox, reg):
|
281 |
+
# calibrate bounding boxes
|
282 |
+
if reg.shape[1] == 1:
|
283 |
+
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
|
284 |
+
|
285 |
+
w = boundingbox[:, 2] - boundingbox[:, 0] + 1
|
286 |
+
h = boundingbox[:, 3] - boundingbox[:, 1] + 1
|
287 |
+
b1 = boundingbox[:, 0] + reg[:, 0] * w
|
288 |
+
b2 = boundingbox[:, 1] + reg[:, 1] * h
|
289 |
+
b3 = boundingbox[:, 2] + reg[:, 2] * w
|
290 |
+
b4 = boundingbox[:, 3] + reg[:, 3] * h
|
291 |
+
boundingbox[:, 0:4] = np.transpose(np.vstack([b1, b2, b3, b4]))
|
292 |
+
return boundingbox
|
293 |
+
|
294 |
+
def __stage1(self, image, scales: list, stage_status: StageStatus):
|
295 |
+
"""
|
296 |
+
First stage of the MTCNN.
|
297 |
+
:param image:
|
298 |
+
:param scales:
|
299 |
+
:param stage_status:
|
300 |
+
:return:
|
301 |
+
"""
|
302 |
+
total_boxes = np.empty((0, 9))
|
303 |
+
status = stage_status
|
304 |
+
|
305 |
+
for scale in scales:
|
306 |
+
scaled_image = self.__scale_image(image, scale)
|
307 |
+
|
308 |
+
img_x = np.expand_dims(scaled_image, 0)
|
309 |
+
img_y = np.transpose(img_x, (0, 2, 1, 3))
|
310 |
+
|
311 |
+
out = tflite_inference(self.p_net, img_y)
|
312 |
+
|
313 |
+
out0 = np.transpose(out[0], (0, 2, 1, 3))
|
314 |
+
out1 = np.transpose(out[1], (0, 2, 1, 3))
|
315 |
+
|
316 |
+
boxes, _ = self.__generate_bounding_box(
|
317 |
+
out1[0, :, :, 1].copy(),
|
318 |
+
out0[0, :, :, :].copy(),
|
319 |
+
scale,
|
320 |
+
self._steps_threshold[0],
|
321 |
+
)
|
322 |
+
|
323 |
+
# inter-scale nms
|
324 |
+
pick = self.__nms(boxes.copy(), 0.5, "Union")
|
325 |
+
if boxes.size > 0 and pick.size > 0:
|
326 |
+
boxes = boxes[pick, :]
|
327 |
+
total_boxes = np.append(total_boxes, boxes, axis=0)
|
328 |
+
|
329 |
+
numboxes = total_boxes.shape[0]
|
330 |
+
|
331 |
+
if numboxes > 0:
|
332 |
+
pick = self.__nms(total_boxes.copy(), 0.7, "Union")
|
333 |
+
total_boxes = total_boxes[pick, :]
|
334 |
+
|
335 |
+
regw = total_boxes[:, 2] - total_boxes[:, 0]
|
336 |
+
regh = total_boxes[:, 3] - total_boxes[:, 1]
|
337 |
+
|
338 |
+
qq1 = total_boxes[:, 0] + total_boxes[:, 5] * regw
|
339 |
+
qq2 = total_boxes[:, 1] + total_boxes[:, 6] * regh
|
340 |
+
qq3 = total_boxes[:, 2] + total_boxes[:, 7] * regw
|
341 |
+
qq4 = total_boxes[:, 3] + total_boxes[:, 8] * regh
|
342 |
+
|
343 |
+
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:, 4]]))
|
344 |
+
total_boxes = self.__rerec(total_boxes.copy())
|
345 |
+
|
346 |
+
total_boxes[:, 0:4] = np.fix(total_boxes[:, 0:4]).astype(np.int32)
|
347 |
+
status = StageStatus(
|
348 |
+
self.__pad(total_boxes.copy(), stage_status.width, stage_status.height),
|
349 |
+
width=stage_status.width,
|
350 |
+
height=stage_status.height,
|
351 |
+
)
|
352 |
+
|
353 |
+
return total_boxes, status
|
354 |
+
|
355 |
+
def __stage2(self, img, total_boxes, stage_status: StageStatus):
|
356 |
+
"""
|
357 |
+
Second stage of the MTCNN.
|
358 |
+
:param img:
|
359 |
+
:param total_boxes:
|
360 |
+
:param stage_status:
|
361 |
+
:return:
|
362 |
+
"""
|
363 |
+
|
364 |
+
num_boxes = total_boxes.shape[0]
|
365 |
+
if num_boxes == 0:
|
366 |
+
return total_boxes, stage_status
|
367 |
+
|
368 |
+
# second stage
|
369 |
+
tempimg = np.zeros(shape=(24, 24, 3, num_boxes))
|
370 |
+
|
371 |
+
for k in range(0, num_boxes):
|
372 |
+
tmp = np.zeros((int(stage_status.tmp_h[k]), int(stage_status.tmp_w[k]), 3))
|
373 |
+
|
374 |
+
tmp[
|
375 |
+
stage_status.dy[k] - 1 : stage_status.edy[k],
|
376 |
+
stage_status.dx[k] - 1 : stage_status.edx[k],
|
377 |
+
:,
|
378 |
+
] = img[
|
379 |
+
stage_status.y[k] - 1 : stage_status.ey[k],
|
380 |
+
stage_status.x[k] - 1 : stage_status.ex[k],
|
381 |
+
:,
|
382 |
+
]
|
383 |
+
|
384 |
+
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
|
385 |
+
tempimg[:, :, :, k] = cv2.resize(tmp, (24, 24), interpolation=cv2.INTER_AREA)
|
386 |
+
|
387 |
+
else:
|
388 |
+
return np.empty(shape=(0,)), stage_status
|
389 |
+
|
390 |
+
tempimg = (tempimg - 127.5) * 0.0078125
|
391 |
+
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
|
392 |
+
|
393 |
+
out = tflite_inference(self.r_net, tempimg1)
|
394 |
+
|
395 |
+
out0 = np.transpose(out[0])
|
396 |
+
out1 = np.transpose(out[1])
|
397 |
+
|
398 |
+
score = out1[1, :]
|
399 |
+
|
400 |
+
ipass = np.where(score > self._steps_threshold[1])
|
401 |
+
|
402 |
+
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
|
403 |
+
|
404 |
+
mv = out0[:, ipass[0]]
|
405 |
+
|
406 |
+
if total_boxes.shape[0] > 0:
|
407 |
+
pick = self.__nms(total_boxes, 0.7, "Union")
|
408 |
+
total_boxes = total_boxes[pick, :]
|
409 |
+
total_boxes = self.__bbreg(total_boxes.copy(), np.transpose(mv[:, pick]))
|
410 |
+
total_boxes = self.__rerec(total_boxes.copy())
|
411 |
+
|
412 |
+
return total_boxes, stage_status
|
413 |
+
|
414 |
+
def __stage3(self, img, total_boxes, stage_status: StageStatus):
|
415 |
+
"""
|
416 |
+
Third stage of the MTCNN.
|
417 |
+
|
418 |
+
:param img:
|
419 |
+
:param total_boxes:
|
420 |
+
:param stage_status:
|
421 |
+
:return:
|
422 |
+
"""
|
423 |
+
num_boxes = total_boxes.shape[0]
|
424 |
+
if num_boxes == 0:
|
425 |
+
return total_boxes, np.empty(shape=(0,))
|
426 |
+
|
427 |
+
total_boxes = np.fix(total_boxes).astype(np.int32)
|
428 |
+
|
429 |
+
status = StageStatus(
|
430 |
+
self.__pad(total_boxes.copy(), stage_status.width, stage_status.height),
|
431 |
+
width=stage_status.width,
|
432 |
+
height=stage_status.height,
|
433 |
+
)
|
434 |
+
|
435 |
+
tempimg = np.zeros((48, 48, 3, num_boxes))
|
436 |
+
|
437 |
+
for k in range(0, num_boxes):
|
438 |
+
tmp = np.zeros((int(status.tmp_h[k]), int(status.tmp_w[k]), 3))
|
439 |
+
|
440 |
+
tmp[status.dy[k] - 1 : status.edy[k], status.dx[k] - 1 : status.edx[k], :] = img[
|
441 |
+
status.y[k] - 1 : status.ey[k], status.x[k] - 1 : status.ex[k], :
|
442 |
+
]
|
443 |
+
|
444 |
+
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
|
445 |
+
tempimg[:, :, :, k] = cv2.resize(tmp, (48, 48), interpolation=cv2.INTER_AREA)
|
446 |
+
else:
|
447 |
+
return np.empty(shape=(0,)), np.empty(shape=(0,))
|
448 |
+
|
449 |
+
tempimg = (tempimg - 127.5) * 0.0078125
|
450 |
+
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
|
451 |
+
|
452 |
+
out = tflite_inference(self.o_net, tempimg1)
|
453 |
+
out0 = np.transpose(out[0])
|
454 |
+
out1 = np.transpose(out[1])
|
455 |
+
out2 = np.transpose(out[2])
|
456 |
+
|
457 |
+
score = out2[1, :]
|
458 |
+
|
459 |
+
points = out1
|
460 |
+
|
461 |
+
ipass = np.where(score > self._steps_threshold[2])
|
462 |
+
|
463 |
+
points = points[:, ipass[0]]
|
464 |
+
|
465 |
+
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
|
466 |
+
|
467 |
+
mv = out0[:, ipass[0]]
|
468 |
+
|
469 |
+
w = total_boxes[:, 2] - total_boxes[:, 0] + 1
|
470 |
+
h = total_boxes[:, 3] - total_boxes[:, 1] + 1
|
471 |
+
|
472 |
+
points[0:5, :] = np.tile(w, (5, 1)) * points[0:5, :] + np.tile(total_boxes[:, 0], (5, 1)) - 1
|
473 |
+
points[5:10, :] = np.tile(h, (5, 1)) * points[5:10, :] + np.tile(total_boxes[:, 1], (5, 1)) - 1
|
474 |
+
|
475 |
+
if total_boxes.shape[0] > 0:
|
476 |
+
total_boxes = self.__bbreg(total_boxes.copy(), np.transpose(mv))
|
477 |
+
pick = self.__nms(total_boxes.copy(), 0.7, "Min")
|
478 |
+
total_boxes = total_boxes[pick, :]
|
479 |
+
points = points[:, pick]
|
480 |
+
|
481 |
+
return total_boxes, points.transpose()
|
tools/face_recognition.py
CHANGED
@@ -1,203 +1,114 @@
|
|
1 |
-
from .
|
|
|
|
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
-
from sklearn.metrics.pairwise import cosine_distances
|
5 |
from skimage.transform import SimilarityTransform
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
]
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
def align(img, landmarks, target_size=(112, 112)):
|
31 |
-
# Transform to Landmark-Coordinates from relative landmark positions
|
32 |
-
dst = np.asarray(landmarks) * img.shape[:2][::-1]
|
33 |
-
|
34 |
-
# Target Landmarks-Coordinates from ArcFace Paper
|
35 |
-
src = np.array(
|
36 |
-
[
|
37 |
-
[38.2946, 51.6963],
|
38 |
-
[73.5318, 51.5014],
|
39 |
-
[56.0252, 71.7366],
|
40 |
-
[41.5493, 92.3655],
|
41 |
-
[70.7299, 92.2041],
|
42 |
-
],
|
43 |
-
dtype=np.float32,
|
44 |
-
)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
tmatrix = tform.params[0:2, :]
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
def align_faces(img, detections):
|
58 |
-
updated_detections = []
|
59 |
-
for detection in detections:
|
60 |
-
updated_detections.append(
|
61 |
-
detection._replace(face=align(img, detection.landmarks))
|
62 |
-
)
|
63 |
-
return updated_detections
|
64 |
-
|
65 |
-
|
66 |
-
# TODO Error when uploading image while running!
|
67 |
-
def inference(detections, model):
|
68 |
-
updated_detections = []
|
69 |
-
faces = [detection.face for detection in detections if detection.face is not None]
|
70 |
-
|
71 |
-
if len(faces) > 0:
|
72 |
-
faces = np.asarray(faces).astype(np.float32) / 255
|
73 |
-
model.resize_tensor_input(model.get_input_details()[0]["index"], faces.shape)
|
74 |
-
model.allocate_tensors()
|
75 |
-
model.set_tensor(model.get_input_details()[0]["index"], faces)
|
76 |
-
model.invoke()
|
77 |
-
embs = [model.get_tensor(elem["index"]) for elem in model.get_output_details()][
|
78 |
-
0
|
79 |
-
]
|
80 |
|
|
|
|
|
81 |
for idx, detection in enumerate(detections):
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
if len(gallery) == 0 or len(detections) == 0:
|
88 |
-
return detections
|
89 |
-
|
90 |
-
gallery_embs = np.asarray([identity.embedding for identity in gallery])
|
91 |
-
detection_embs = np.asarray([detection.embedding for detection in detections])
|
92 |
-
|
93 |
-
cos_distances = cosine_distances(detection_embs, gallery_embs)
|
94 |
-
|
95 |
-
updated_detections = []
|
96 |
-
for idx, detection in enumerate(detections):
|
97 |
-
idx_min = np.argmin(cos_distances[idx])
|
98 |
-
if thresh and cos_distances[idx][idx_min] > thresh:
|
99 |
-
dist = cos_distances[idx][idx_min]
|
100 |
-
pred = None
|
101 |
-
else:
|
102 |
-
dist = cos_distances[idx][idx_min]
|
103 |
-
pred = idx_min
|
104 |
-
updated_detections.append(
|
105 |
-
detection._replace(
|
106 |
-
name=gallery[pred]
|
107 |
-
.name.split(".jpg")[0]
|
108 |
-
.split(".png")[0]
|
109 |
-
.split(".jpeg")[0]
|
110 |
-
if pred is not None
|
111 |
-
else None,
|
112 |
-
embedding_match=gallery[pred].embedding if pred is not None else None,
|
113 |
-
face_match=gallery[pred].image if pred is not None else None,
|
114 |
-
distance=dist,
|
115 |
-
)
|
116 |
-
)
|
117 |
-
|
118 |
-
return updated_detections
|
119 |
-
|
120 |
-
|
121 |
-
def process_gallery(files, face_detection_model, face_recognition_model):
|
122 |
-
gallery = []
|
123 |
-
for file in files:
|
124 |
-
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
|
125 |
-
img = cv2.cvtColor(
|
126 |
-
cv2.imdecode(file_bytes, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
|
127 |
-
)
|
128 |
-
|
129 |
-
detections = detect_faces(img, face_detection_model)
|
130 |
-
|
131 |
-
# We accept only one face per image!
|
132 |
-
if detections == []:
|
133 |
-
continue
|
134 |
-
elif len(detections) > 1:
|
135 |
-
detections = detections[:1]
|
136 |
-
|
137 |
-
detections = align_faces(img, detections)
|
138 |
-
detections = inference(detections, face_recognition_model)
|
139 |
-
|
140 |
-
gallery.append(
|
141 |
-
Identity(
|
142 |
-
name=file.name,
|
143 |
-
embedding=detections[0].embedding,
|
144 |
-
image=detections[0].face,
|
145 |
-
)
|
146 |
-
)
|
147 |
-
|
148 |
-
return gallery
|
149 |
-
|
150 |
-
|
151 |
-
def draw_detections(
|
152 |
-
frame, detections, bbox=True, landmarks=True, name=True):
|
153 |
-
shape = np.asarray(frame.shape[:2][::-1])
|
154 |
-
|
155 |
-
for detection in detections:
|
156 |
-
# Draw Landmarks
|
157 |
-
if landmarks:
|
158 |
-
for landmark in detection.landmarks:
|
159 |
-
cv2.circle(
|
160 |
-
frame,
|
161 |
-
(np.asarray(landmark) * shape).astype(int),
|
162 |
-
2,
|
163 |
-
(0, 0, 255),
|
164 |
-
-1,
|
165 |
)
|
166 |
-
|
167 |
-
# Draw Bounding Box
|
168 |
-
if bbox:
|
169 |
-
cv2.rectangle(
|
170 |
-
frame,
|
171 |
-
(np.asarray(detection.bbox[:2]) * shape).astype(int),
|
172 |
-
(np.asarray(detection.bbox[2:]) * shape).astype(int),
|
173 |
-
(0, 255, 0),
|
174 |
-
2,
|
175 |
-
)
|
176 |
-
|
177 |
-
# Draw Name
|
178 |
-
if name:
|
179 |
-
cv2.rectangle(
|
180 |
-
frame,
|
181 |
-
(
|
182 |
-
int(detection.bbox[0] * shape[0]),
|
183 |
-
int(detection.bbox[1] * shape[1] - (shape[1] // 25)),
|
184 |
-
),
|
185 |
-
(int(detection.bbox[2] * shape[0]), int(detection.bbox[1] * shape[1])),
|
186 |
-
(255, 255, 255),
|
187 |
-
-1,
|
188 |
-
)
|
189 |
-
|
190 |
-
cv2.putText(
|
191 |
-
frame,
|
192 |
-
detection.name,
|
193 |
-
(
|
194 |
-
int(detection.bbox[0] * shape[0] + shape[0] // 400),
|
195 |
-
int(detection.bbox[1] * shape[1] - shape[1] // 100),
|
196 |
-
),
|
197 |
-
cv2.LINE_AA,
|
198 |
-
0.5,
|
199 |
-
(0, 0, 0),
|
200 |
-
2,
|
201 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import tflite_inference
|
2 |
+
from .nametypes import Identity, Match
|
3 |
+
from sklearn.metrics.pairwise import cosine_distances
|
4 |
import numpy as np
|
5 |
import cv2
|
|
|
6 |
from skimage.transform import SimilarityTransform
|
7 |
+
from .utils import get_file
|
8 |
+
import tflite_runtime.interpreter as tflite
|
9 |
+
from typing import Literal
|
10 |
+
|
11 |
+
|
12 |
+
BASE_URL = "https://github.com/Martlgap/FaceIDLight/releases/download/v.0.1/"
|
13 |
+
|
14 |
+
FILE_HASHES = {
|
15 |
+
"mobileNet": "6c19b789f661caa8da735566490bfd8895beffb2a1ec97a56b126f0539991aa6",
|
16 |
+
"resNet": "f4d8b0194957a3ad766135505fc70a91343660151a8103bbb6c3b8ac34dbb4e2",
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
class FaceRecognition:
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
min_similarity: float = 0.67,
|
24 |
+
model_name: Literal["mobileNet", "resNet50"] = "mobileNet",
|
25 |
+
):
|
26 |
+
self.min_similarity = min_similarity
|
27 |
+
self.model = tflite.Interpreter(model_path=get_file(BASE_URL + f"{model_name}.tflite", FILE_HASHES[model_name]))
|
28 |
+
|
29 |
+
def __call__(self, frame, detections):
|
30 |
+
# Align Faces
|
31 |
+
faces, faces_aligned = [], []
|
32 |
+
for detection in detections:
|
33 |
+
face = frame[
|
34 |
+
int(detection.bbox[0][1]) : int(detection.bbox[1][1]),
|
35 |
+
int(detection.bbox[0][0]) : int(detection.bbox[1][0]),
|
36 |
]
|
37 |
+
try:
|
38 |
+
face = cv2.resize(face, (112, 112))
|
39 |
+
except:
|
40 |
+
face = np.zeros((112, 112, 3))
|
41 |
|
42 |
+
faces.append(face)
|
43 |
+
faces_aligned.append(self.align(frame, detection.landmarks))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Do Inference
|
46 |
+
if len(faces_aligned) == 0:
|
47 |
+
return []
|
|
|
48 |
|
49 |
+
# Normalize images from [0, 255] to [0, 1]
|
50 |
+
faces_aligned_norm = np.asarray(faces_aligned).astype(np.float32) / 255.0
|
51 |
|
52 |
+
embs_det = tflite_inference(self.model, faces_aligned_norm)
|
53 |
+
embs_det = np.asarray(embs_det[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Save Identities
|
56 |
+
identities = []
|
57 |
for idx, detection in enumerate(detections):
|
58 |
+
identities.append(
|
59 |
+
Identity(
|
60 |
+
detection_idx=detection.idx,
|
61 |
+
embedding=embs_det[idx],
|
62 |
+
face_aligned=faces_aligned[idx],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
+
return identities
|
66 |
+
|
67 |
+
def find_matches(self, identities, gallery):
|
68 |
+
if len(gallery) == 0 or len(identities) == 0:
|
69 |
+
return []
|
70 |
+
|
71 |
+
# Get Embeddings
|
72 |
+
embs_gal = np.asarray([identity.embedding for identity in gallery])
|
73 |
+
embs_det = np.asarray([identity.embedding for identity in identities])
|
74 |
+
|
75 |
+
# Calculate Cosine Distances
|
76 |
+
cos_distances = cosine_distances(embs_det, embs_gal)
|
77 |
+
|
78 |
+
# Find Matches
|
79 |
+
matches = []
|
80 |
+
for ident_idx, identity in enumerate(identities):
|
81 |
+
dist_to_identity = cos_distances[ident_idx]
|
82 |
+
idx_min = np.argmin(dist_to_identity)
|
83 |
+
if dist_to_identity[idx_min] < self.min_similarity:
|
84 |
+
matches.append(
|
85 |
+
Match(
|
86 |
+
identity_idx=identity.detection_idx,
|
87 |
+
gallery_idx=idx_min,
|
88 |
+
distance=dist_to_identity[idx_min],
|
89 |
+
name=gallery[idx_min].name,
|
90 |
+
)
|
91 |
+
)
|
92 |
|
93 |
+
# Sort Matches by identity_idx
|
94 |
+
matches = sorted(matches, key=lambda match: match.gallery_idx)
|
95 |
+
|
96 |
+
return matches
|
97 |
+
|
98 |
+
@staticmethod
|
99 |
+
def align(img, landmarks_source, target_size=(112, 112)):
|
100 |
+
landmarks_target = np.array(
|
101 |
+
[
|
102 |
+
[38.2946, 51.6963],
|
103 |
+
[73.5318, 51.5014],
|
104 |
+
[56.0252, 71.7366],
|
105 |
+
[41.5493, 92.3655],
|
106 |
+
[70.7299, 92.2041],
|
107 |
+
],
|
108 |
+
dtype=np.float32,
|
109 |
+
)
|
110 |
+
tform = SimilarityTransform()
|
111 |
+
tform.estimate(landmarks_source, landmarks_target)
|
112 |
+
tmatrix = tform.params[0:2, :]
|
113 |
+
face_aligned = cv2.warpAffine(img, tmatrix, target_size, borderValue=0.0)
|
114 |
+
return face_aligned
|
tools/nametypes.py
CHANGED
@@ -3,14 +3,17 @@ import numpy as np
|
|
3 |
|
4 |
|
5 |
class Detection(NamedTuple):
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
name: str = None
|
9 |
-
face: np.ndarray = None
|
10 |
embedding: np.ndarray = None
|
11 |
-
|
12 |
-
face_match: np.ndarray = None
|
13 |
-
distance: float = None
|
14 |
|
15 |
|
16 |
class Stats(NamedTuple):
|
@@ -18,13 +21,13 @@ class Stats(NamedTuple):
|
|
18 |
resolution: List[int] = [None, None, None]
|
19 |
num_faces: int = 0
|
20 |
detection: float = None
|
21 |
-
alignment: float = None
|
22 |
-
inference: float = None
|
23 |
recognition: float = None
|
24 |
-
|
|
|
25 |
|
26 |
|
27 |
-
class
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
3 |
|
4 |
|
5 |
class Detection(NamedTuple):
|
6 |
+
idx: int = None
|
7 |
+
bbox: List[List[float]] = None
|
8 |
+
landmarks: List[List[float]] = None
|
9 |
+
confidence: float = None
|
10 |
+
|
11 |
+
|
12 |
+
class Identity(NamedTuple):
|
13 |
+
detection_idx: int = None
|
14 |
name: str = None
|
|
|
15 |
embedding: np.ndarray = None
|
16 |
+
face_aligned: np.ndarray = None
|
|
|
|
|
17 |
|
18 |
|
19 |
class Stats(NamedTuple):
|
|
|
21 |
resolution: List[int] = [None, None, None]
|
22 |
num_faces: int = 0
|
23 |
detection: float = None
|
|
|
|
|
24 |
recognition: float = None
|
25 |
+
matching: float = None
|
26 |
+
annotation: float = None
|
27 |
|
28 |
|
29 |
+
class Match(NamedTuple):
|
30 |
+
identity_idx: int = None
|
31 |
+
gallery_idx: int = None
|
32 |
+
distance: float = None
|
33 |
+
name: str = None
|
tools/pca.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.decomposition import PCA
|
2 |
+
import numpy as np
|
3 |
+
import plotly.express as px
|
4 |
+
|
5 |
+
|
6 |
+
def pca(matches, identities, gallery, dim=3):
|
7 |
+
"""
|
8 |
+
Perform PCA on embeddings.
|
9 |
+
Args:
|
10 |
+
embeddings: np.array of shape (n_embeddings, 512)
|
11 |
+
Returns:
|
12 |
+
embeddings_pca: np.array of shape (n_embeddings, 3)
|
13 |
+
"""
|
14 |
+
|
15 |
+
# Get Gallery and Detection Embeddings and stich them together in groups
|
16 |
+
embeddings = np.concatenate(
|
17 |
+
[[gallery[match.gallery_idx].embedding, identities[match.identity_idx].embedding] for match in matches],
|
18 |
+
axis=0,
|
19 |
+
)
|
20 |
+
|
21 |
+
# Get Identity Names and stich them together in groups
|
22 |
+
identity_names = np.concatenate(
|
23 |
+
[[gallery[match.gallery_idx].name, gallery[match.gallery_idx].name] for match in matches],
|
24 |
+
axis=0,
|
25 |
+
)
|
26 |
+
|
27 |
+
# Do 3D PCA
|
28 |
+
pca = PCA(n_components=dim)
|
29 |
+
pca.fit(embeddings)
|
30 |
+
embeddings_pca = pca.transform(embeddings)
|
31 |
+
|
32 |
+
if dim == 3:
|
33 |
+
fig = px.scatter_3d(
|
34 |
+
embeddings_pca,
|
35 |
+
x=0,
|
36 |
+
y=1,
|
37 |
+
z=2,
|
38 |
+
opacity=0.7,
|
39 |
+
color=identity_names,
|
40 |
+
color_discrete_sequence=px.colors.qualitative.Vivid,
|
41 |
+
)
|
42 |
+
fig.update_traces(marker=dict(size=4))
|
43 |
+
elif dim == 2:
|
44 |
+
fig = px.scatter(
|
45 |
+
embeddings_pca,
|
46 |
+
x=0,
|
47 |
+
y=1,
|
48 |
+
opacity=0.7,
|
49 |
+
color=identity_names,
|
50 |
+
color_discrete_sequence=px.colors.qualitative.Vivid,
|
51 |
+
)
|
52 |
+
fig.update_traces(marker=dict(size=4))
|
53 |
+
fig.update_xaxes(showgrid=True)
|
54 |
+
fig.update_yaxes(showgrid=True)
|
55 |
+
else:
|
56 |
+
raise ValueError("dim must be either 2 or 3")
|
57 |
+
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
|
58 |
+
|
59 |
+
return fig
|
tools/utils.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import logging
|
2 |
import os
|
3 |
-
import urllib.request
|
4 |
-
from pathlib import Path
|
5 |
import streamlit as st
|
6 |
from twilio.rest import Client
|
7 |
import os
|
8 |
-
import cv2
|
9 |
import numpy as np
|
10 |
import hashlib
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
logger = logging.getLogger(__name__)
|
@@ -25,9 +28,7 @@ def get_ice_servers(name="twilio"):
|
|
25 |
account_sid = os.environ["TWILIO_ACCOUNT_SID"]
|
26 |
auth_token = os.environ["TWILIO_AUTH_TOKEN"]
|
27 |
except KeyError:
|
28 |
-
logger.warning(
|
29 |
-
"Twilio credentials are not set. Fallback to a free STUN server from Google."
|
30 |
-
)
|
31 |
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
32 |
|
33 |
client = Client(account_sid, auth_token)
|
@@ -41,9 +42,7 @@ def get_ice_servers(name="twilio"):
|
|
41 |
username = os.environ["METERED_USERNAME"]
|
42 |
credential = os.environ["METERED_CREDENTIAL"]
|
43 |
except KeyError:
|
44 |
-
logger.warning(
|
45 |
-
"Metered credentials are not set. Fallback to a free STUN server from Google."
|
46 |
-
)
|
47 |
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
48 |
|
49 |
ice_servers = [
|
@@ -78,70 +77,6 @@ def get_ice_servers(name="twilio"):
|
|
78 |
raise ValueError(f"Unknown name: {name}")
|
79 |
|
80 |
|
81 |
-
def get_hash(filepath):
|
82 |
-
hasher = hashlib.sha256()
|
83 |
-
with open(filepath, "rb") as file:
|
84 |
-
for chunk in iter(lambda: file.read(65535), b""):
|
85 |
-
hasher.update(chunk)
|
86 |
-
return hasher.hexdigest()
|
87 |
-
|
88 |
-
|
89 |
-
def download_file(url, model_path: Path, file_hash=None):
|
90 |
-
if model_path.exists():
|
91 |
-
if file_hash:
|
92 |
-
hasher = hashlib.sha256()
|
93 |
-
with open(model_path, "rb") as file:
|
94 |
-
for chunk in iter(lambda: file.read(65535), b""):
|
95 |
-
hasher.update(chunk)
|
96 |
-
if not hasher.hexdigest() == file_hash:
|
97 |
-
print(
|
98 |
-
"A local file was found, but it seems to be incomplete or outdated because the file hash does not "
|
99 |
-
"match the original value of "
|
100 |
-
+ file_hash
|
101 |
-
+ " so data will be downloaded."
|
102 |
-
)
|
103 |
-
download = True
|
104 |
-
else:
|
105 |
-
print("Using a verified local file.")
|
106 |
-
download = False
|
107 |
-
else:
|
108 |
-
model_path.mkdir(parents=True, exist_ok=True)
|
109 |
-
print("Downloading data ...")
|
110 |
-
download = True
|
111 |
-
|
112 |
-
if download:
|
113 |
-
# These are handles to two visual elements to animate.
|
114 |
-
weights_warning, progress_bar = None, None
|
115 |
-
try:
|
116 |
-
weights_warning = st.warning("Downloading %s..." % url)
|
117 |
-
progress_bar = st.progress(0)
|
118 |
-
with open(model_path, "wb") as output_file:
|
119 |
-
with urllib.request.urlopen(url) as response:
|
120 |
-
length = int(response.info()["Content-Length"])
|
121 |
-
counter = 0.0
|
122 |
-
MEGABYTES = 2.0**20.0
|
123 |
-
while True:
|
124 |
-
data = response.read(8192)
|
125 |
-
if not data:
|
126 |
-
break
|
127 |
-
counter += len(data)
|
128 |
-
output_file.write(data)
|
129 |
-
|
130 |
-
# We perform animation by overwriting the elements.
|
131 |
-
weights_warning.warning(
|
132 |
-
"Downloading %s... (%6.2f/%6.2f MB)"
|
133 |
-
% (url, counter / MEGABYTES, length / MEGABYTES)
|
134 |
-
)
|
135 |
-
progress_bar.progress(min(counter / length, 1.0))
|
136 |
-
|
137 |
-
# Finally, we remove these visual elements by calling .empty().
|
138 |
-
finally:
|
139 |
-
if weights_warning is not None:
|
140 |
-
weights_warning.empty()
|
141 |
-
if progress_bar is not None:
|
142 |
-
progress_bar.empty()
|
143 |
-
|
144 |
-
|
145 |
# Function to format floats within a list
|
146 |
def format_dflist(val):
|
147 |
if isinstance(val, list):
|
@@ -156,20 +91,74 @@ def format_dflist(val):
|
|
156 |
return val
|
157 |
|
158 |
|
159 |
-
def display_match(d):
|
160 |
-
im = np.concatenate([d.face, d.face_match])
|
161 |
-
border_size = 2
|
162 |
-
border = cv2.copyMakeBorder(
|
163 |
-
im,
|
164 |
-
top=border_size,
|
165 |
-
bottom=border_size,
|
166 |
-
left=border_size,
|
167 |
-
right=border_size,
|
168 |
-
borderType=cv2.BORDER_CONSTANT,
|
169 |
-
value=(255, 255, 120),
|
170 |
-
)
|
171 |
-
return border
|
172 |
-
|
173 |
-
|
174 |
def rgb(r, g, b):
|
175 |
return "#{:02x}{:02x}{:02x}".format(r, g, b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import os
|
|
|
|
|
3 |
import streamlit as st
|
4 |
from twilio.rest import Client
|
5 |
import os
|
|
|
6 |
import numpy as np
|
7 |
import hashlib
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
import hashlib
|
11 |
+
from tqdm import tqdm
|
12 |
+
from zipfile import ZipFile
|
13 |
+
from urllib.request import urlopen
|
14 |
|
15 |
|
16 |
logger = logging.getLogger(__name__)
|
|
|
28 |
account_sid = os.environ["TWILIO_ACCOUNT_SID"]
|
29 |
auth_token = os.environ["TWILIO_AUTH_TOKEN"]
|
30 |
except KeyError:
|
31 |
+
logger.warning("Twilio credentials are not set. Fallback to a free STUN server from Google.")
|
|
|
|
|
32 |
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
33 |
|
34 |
client = Client(account_sid, auth_token)
|
|
|
42 |
username = os.environ["METERED_USERNAME"]
|
43 |
credential = os.environ["METERED_CREDENTIAL"]
|
44 |
except KeyError:
|
45 |
+
logger.warning("Metered credentials are not set. Fallback to a free STUN server from Google.")
|
|
|
|
|
46 |
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
47 |
|
48 |
ice_servers = [
|
|
|
77 |
raise ValueError(f"Unknown name: {name}")
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Function to format floats within a list
|
81 |
def format_dflist(val):
|
82 |
if isinstance(val, list):
|
|
|
91 |
return val
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
def rgb(r, g, b):
|
95 |
return "#{:02x}{:02x}{:02x}".format(r, g, b)
|
96 |
+
|
97 |
+
|
98 |
+
def tflite_inference(model, img):
|
99 |
+
"""Inferences an image through the model with tflite interpreter on CPU
|
100 |
+
:param model: a tflite.Interpreter loaded with a model
|
101 |
+
:param img: image
|
102 |
+
:return: list of outputs of the model
|
103 |
+
"""
|
104 |
+
# Check if img is np.ndarray
|
105 |
+
if not isinstance(img, np.ndarray):
|
106 |
+
img = np.asarray(img)
|
107 |
+
|
108 |
+
# Check if dim is 4
|
109 |
+
if len(img.shape) == 3:
|
110 |
+
img = np.expand_dims(img, axis=0)
|
111 |
+
|
112 |
+
input_details = model.get_input_details()
|
113 |
+
output_details = model.get_output_details()
|
114 |
+
model.resize_tensor_input(input_details[0]["index"], img.shape)
|
115 |
+
model.allocate_tensors()
|
116 |
+
model.set_tensor(input_details[0]["index"], img.astype(np.float32))
|
117 |
+
model.invoke()
|
118 |
+
return [model.get_tensor(elem["index"]) for elem in output_details]
|
119 |
+
|
120 |
+
|
121 |
+
def get_file(origin, file_hash, is_zip=False):
|
122 |
+
tmp_file = os.path.join(tempfile.gettempdir(), "FaceIDLight", origin.split("/")[-1])
|
123 |
+
os.makedirs(os.path.dirname(tmp_file), exist_ok=True)
|
124 |
+
if not os.path.exists(tmp_file):
|
125 |
+
download = True
|
126 |
+
else:
|
127 |
+
hasher = hashlib.sha256()
|
128 |
+
with open(tmp_file, "rb") as file:
|
129 |
+
for chunk in iter(lambda: file.read(65535), b""):
|
130 |
+
hasher.update(chunk)
|
131 |
+
if not hasher.hexdigest() == file_hash:
|
132 |
+
print(
|
133 |
+
"A local file was found, but it seems to be incomplete or outdated because the file hash does not "
|
134 |
+
"match the original value of " + file_hash + " so data will be downloaded."
|
135 |
+
)
|
136 |
+
download = True
|
137 |
+
else:
|
138 |
+
download = False
|
139 |
+
|
140 |
+
if download:
|
141 |
+
response = urlopen(origin)
|
142 |
+
with tqdm.wrapattr(
|
143 |
+
open(tmp_file, "wb"),
|
144 |
+
"write",
|
145 |
+
miniters=1,
|
146 |
+
desc="Downloading " + origin.split("/")[-1] + " to: " + tmp_file,
|
147 |
+
total=getattr(response, "length", None),
|
148 |
+
) as file:
|
149 |
+
for chunk in response:
|
150 |
+
file.write(chunk)
|
151 |
+
file.close()
|
152 |
+
if is_zip:
|
153 |
+
with ZipFile(tmp_file, "r") as zipObj:
|
154 |
+
zipObj.extractall(tmp_file.split(".")[0])
|
155 |
+
tmp_file = os.path.join(tmp_file.split(".")[0])
|
156 |
+
return tmp_file
|
157 |
+
|
158 |
+
|
159 |
+
def get_hash(filepath):
|
160 |
+
hasher = hashlib.sha256()
|
161 |
+
with open(filepath, "rb") as file:
|
162 |
+
for chunk in iter(lambda: file.read(65535), b""):
|
163 |
+
hasher.update(chunk)
|
164 |
+
return hasher.hexdigest()
|