Spaces:
Running
Running
fixed upload issue
Browse files- app.py +21 -19
- tools/utils.py +3 -3
app.py
CHANGED
@@ -12,7 +12,7 @@ from streamlit_toggle import st_toggle_switch
|
|
12 |
import pandas as pd
|
13 |
from tools.nametypes import Stats, Detection
|
14 |
from pathlib import Path
|
15 |
-
from tools.utils import get_ice_servers, download_file, display_match, rgb,
|
16 |
from tools.face_recognition import (
|
17 |
detect_faces,
|
18 |
align_faces,
|
@@ -22,9 +22,6 @@ from tools.face_recognition import (
|
|
22 |
process_gallery,
|
23 |
)
|
24 |
|
25 |
-
# TODO Error Handling!
|
26 |
-
|
27 |
-
|
28 |
# Set logging level to error (To avoid getting spammed by queue warnings etc.)
|
29 |
logger = logging.getLogger(__name__)
|
30 |
logging.basicConfig(level=logging.ERROR)
|
@@ -54,14 +51,6 @@ with st.sidebar:
|
|
54 |
track_color=rgb(50, 50, 50),
|
55 |
)
|
56 |
|
57 |
-
upscale = st_toggle_switch(
|
58 |
-
"Upscale",
|
59 |
-
key="upscale",
|
60 |
-
default_value=True,
|
61 |
-
active_color=rgb(255, 75, 75),
|
62 |
-
track_color=rgb(50, 50, 50),
|
63 |
-
)
|
64 |
-
|
65 |
st.markdown("## Webcam & Stream")
|
66 |
resolution = st.selectbox(
|
67 |
"Webcam Resolution",
|
@@ -128,6 +117,19 @@ else:
|
|
128 |
)
|
129 |
st.session_state[cache_key] = face_detection_model
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
stats_queue: "queue.Queue[Stats]" = queue.Queue()
|
132 |
detections_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
133 |
|
@@ -173,7 +175,7 @@ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
|
173 |
|
174 |
# Draw detections
|
175 |
start = time.time()
|
176 |
-
frame = draw_detections(frame, detections
|
177 |
stats = stats._replace(drawing=(time.time() - start) * 1000)
|
178 |
|
179 |
# Convert frame back to av.VideoFrame
|
@@ -183,8 +185,8 @@ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
|
183 |
stats = stats._replace(fps=1 / (time.time() - frame_start))
|
184 |
|
185 |
# Send data to other thread
|
186 |
-
detections_queue.
|
187 |
-
stats_queue.
|
188 |
|
189 |
return frame
|
190 |
|
@@ -197,7 +199,7 @@ gallery = st.sidebar.file_uploader(
|
|
197 |
"Upload images to gallery", type=["png", "jpg", "jpeg"], accept_multiple_files=True
|
198 |
)
|
199 |
if gallery:
|
200 |
-
gallery = process_gallery(gallery,
|
201 |
st.sidebar.markdown("**Gallery Images**")
|
202 |
st.sidebar.image(
|
203 |
[identity.image for identity in gallery],
|
@@ -241,17 +243,17 @@ detections = st.empty()
|
|
241 |
if ctx.state.playing:
|
242 |
while True:
|
243 |
# Get stats
|
244 |
-
stats_dataframe = pd.DataFrame([stats_queue.get()])
|
245 |
|
246 |
# Write stats to streamlit
|
247 |
stats.dataframe(stats_dataframe.style.format(thousands=" ", precision=2))
|
248 |
|
249 |
# Get detections
|
250 |
-
detections_data = detections_queue.get()
|
251 |
detections_dataframe = (
|
252 |
pd.DataFrame(detections_data)
|
253 |
.drop(columns=["face", "face_match"], errors="ignore")
|
254 |
-
.applymap(lambda x: (
|
255 |
)
|
256 |
|
257 |
# Write detections to streamlit
|
|
|
12 |
import pandas as pd
|
13 |
from tools.nametypes import Stats, Detection
|
14 |
from pathlib import Path
|
15 |
+
from tools.utils import get_ice_servers, download_file, display_match, rgb, format_dflist
|
16 |
from tools.face_recognition import (
|
17 |
detect_faces,
|
18 |
align_faces,
|
|
|
22 |
process_gallery,
|
23 |
)
|
24 |
|
|
|
|
|
|
|
25 |
# Set logging level to error (To avoid getting spammed by queue warnings etc.)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
logging.basicConfig(level=logging.ERROR)
|
|
|
51 |
track_color=rgb(50, 50, 50),
|
52 |
)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
st.markdown("## Webcam & Stream")
|
55 |
resolution = st.selectbox(
|
56 |
"Webcam Resolution",
|
|
|
117 |
)
|
118 |
st.session_state[cache_key] = face_detection_model
|
119 |
|
120 |
+
# Session-specific caching of the face detection model
|
121 |
+
cache_key = "face_detection_model_gal"
|
122 |
+
if cache_key in st.session_state:
|
123 |
+
face_detection_model_gal = st.session_state[cache_key]
|
124 |
+
else:
|
125 |
+
face_detection_model_gal = mp.solutions.face_mesh.FaceMesh(
|
126 |
+
refine_landmarks=True,
|
127 |
+
min_detection_confidence=detection_confidence,
|
128 |
+
min_tracking_confidence=tracking_confidence,
|
129 |
+
max_num_faces=max_faces,
|
130 |
+
)
|
131 |
+
st.session_state[cache_key] = face_detection_model_gal
|
132 |
+
|
133 |
stats_queue: "queue.Queue[Stats]" = queue.Queue()
|
134 |
detections_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
135 |
|
|
|
175 |
|
176 |
# Draw detections
|
177 |
start = time.time()
|
178 |
+
frame = draw_detections(frame, detections)
|
179 |
stats = stats._replace(drawing=(time.time() - start) * 1000)
|
180 |
|
181 |
# Convert frame back to av.VideoFrame
|
|
|
185 |
stats = stats._replace(fps=1 / (time.time() - frame_start))
|
186 |
|
187 |
# Send data to other thread
|
188 |
+
detections_queue.put_nowait(detections)
|
189 |
+
stats_queue.put_nowait(stats)
|
190 |
|
191 |
return frame
|
192 |
|
|
|
199 |
"Upload images to gallery", type=["png", "jpg", "jpeg"], accept_multiple_files=True
|
200 |
)
|
201 |
if gallery:
|
202 |
+
gallery = process_gallery(gallery, face_detection_model_gal, face_recognition_model_gal)
|
203 |
st.sidebar.markdown("**Gallery Images**")
|
204 |
st.sidebar.image(
|
205 |
[identity.image for identity in gallery],
|
|
|
243 |
if ctx.state.playing:
|
244 |
while True:
|
245 |
# Get stats
|
246 |
+
stats_dataframe = pd.DataFrame([stats_queue.get(timeout=10)])
|
247 |
|
248 |
# Write stats to streamlit
|
249 |
stats.dataframe(stats_dataframe.style.format(thousands=" ", precision=2))
|
250 |
|
251 |
# Get detections
|
252 |
+
detections_data = detections_queue.get(timeout=10)
|
253 |
detections_dataframe = (
|
254 |
pd.DataFrame(detections_data)
|
255 |
.drop(columns=["face", "face_match"], errors="ignore")
|
256 |
+
.applymap(lambda x: (format_dflist(x)))
|
257 |
)
|
258 |
|
259 |
# Write detections to streamlit
|
tools/utils.py
CHANGED
@@ -143,11 +143,11 @@ def download_file(url, model_path: Path, file_hash=None):
|
|
143 |
|
144 |
|
145 |
# Function to format floats within a list
|
146 |
-
def
|
147 |
if isinstance(val, list):
|
148 |
-
return [
|
149 |
if isinstance(val, np.ndarray):
|
150 |
-
return np.asarray([
|
151 |
if isinstance(val, np.float32):
|
152 |
return f"{val:.2f}"
|
153 |
if isinstance(val, float):
|
|
|
143 |
|
144 |
|
145 |
# Function to format floats within a list
|
146 |
+
def format_dflist(val):
|
147 |
if isinstance(val, list):
|
148 |
+
return [format_dflist(num) for num in val]
|
149 |
if isinstance(val, np.ndarray):
|
150 |
+
return np.asarray([format_dflist(num) for num in val])
|
151 |
if isinstance(val, np.float32):
|
152 |
return f"{val:.2f}"
|
153 |
if isinstance(val, float):
|