import gradio as gr from transformers import pipeline from PIL import Image from PIL import UnidentifiedImageError def sign_classifier(input_image): try: # Load the image image = input_image # Emotion classifier sign_pipe = pipeline("image-classification", model="Marxulia/asl_aplhabet_img_classifier_v3") sign_result = sign_pipe(image) predicted_sign = sign_result[0]['label'] sign_confidence = sign_result[0]['score'] # Format the results sign_output = f"Sign Prediction: {predicted_sign}\nConfidence: {sign_confidence}" return sign_output except UnidentifiedImageError: return "Error: Invalid input image format." # Load an example image (replace 'path/to/your/image.jpg' with your actual path) example_image1 = Image.open('H3.jpg') example_image2 = Image.open('B3.jpg') # Create Gradio interface input_image = gr.Image(type="pil", label="Upload Image") output_sign = gr.Textbox(label="Sign Classifier") # Provide a list of examples, where each element is a list with the input and output examples = [[example_image1, "H Sign"],[example_image2, "B Sign"]] # Modify the output based on your image # Include examples in the interface interface = gr.Interface(fn=sign_classifier, inputs=input_image, outputs=[output_sign], title="Image Classifier", description="Upload an image and translate the sign", examples=examples) interface.launch(share=True,debug=True)