File size: 16,282 Bytes
48ac659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#####################################################################
### Credit: Ron Mokady / rmokady                                  ###
### Original Repo: https://github.com/rmokady/CLIP_prefix_caption ###
#####################################################################

from enum import Enum
from collections import defaultdict
import os
from torch import nn
import numpy as np
import torch
import torch.nn.functional as nnf
import sys
from typing import Tuple, List, Union, Optional
from transformers import (
    GPT2Tokenizer,
    GPT2LMHeadModel,
    AdamW,
    get_linear_schedule_with_warmup,
)

# import torch

N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]

WEIGHTS_PATHS = {
    "coco": "coco_weights.pt",
    "conceptual-captions": "conceptual_weights.pt",
}

class MappingType(Enum):
    MLP = 'mlp'
    Transformer = 'transformer'

class MLP(nn.Module):
    def forward(self, x: T) -> T:
        return self.model(x)

    def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
        super(MLP, self).__init__()
        layers = []
        for i in range(len(sizes) - 1):
            layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
            if i < len(sizes) - 2:
                layers.append(act())
        self.model = nn.Sequential(*layers)

class MlpTransformer(nn.Module):
    def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.):
        super().__init__()
        out_d = out_d if out_d is not None else in_dim
        self.fc1 = nn.Linear(in_dim, h_dim)
        self.act = act
        self.fc2 = nn.Linear(h_dim, out_d)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.dropout(x)
        return x

class MultiHeadAttention(nn.Module):

    def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim_self // num_heads
        self.scale = head_dim ** -0.5
        self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
        self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
        self.project = nn.Linear(dim_self, dim_self)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, y=None, mask=None):
        y = y if y is not None else x
        b, n, c = x.shape
        _, m, d = y.shape
        # b n h dh
        queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
        # b m 2 h dh
        keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
        keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
        attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
        if mask is not None:
            if mask.dim() == 2:
                mask = mask.unsqueeze(1)
            attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
        attention = attention.softmax(dim=2)
        out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
        out = self.project(out)
        return out, attention


class TransformerLayer(nn.Module):

    def forward_with_attention(self, x, y=None, mask=None):
        x_, attention = self.attn(self.norm1(x), y, mask)
        x = x + x_
        x = x + self.mlp(self.norm2(x))
        return x, attention

    def forward(self, x, y=None, mask=None):
        x = x + self.attn(self.norm1(x), y, mask)[0]
        x = x + self.mlp(self.norm2(x))
        return x

    def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu,
                 norm_layer: nn.Module = nn.LayerNorm):
        super().__init__()
        self.norm1 = norm_layer(dim_self)
        self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
        self.norm2 = norm_layer(dim_self)
        self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)


class Transformer(nn.Module):

    def forward_with_attention(self, x, y=None, mask=None):
        attentions = []
        for layer in self.layers:
            x, att = layer.forward_with_attention(x, y, mask)
            attentions.append(att)
        return x, attentions

    def forward(self, x, y=None, mask=None):
        for i, layer in enumerate(self.layers):
            if i % 2 == 0 and self.enc_dec: # cross
                x = layer(x, y)
            elif self.enc_dec:  # self
                x = layer(x, x, mask)
            else:  # self or cross
                x = layer(x, y, mask)
        return x

    def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
                 mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
        super(Transformer, self).__init__()
        dim_ref = dim_ref if dim_ref is not None else dim_self
        self.enc_dec = enc_dec
        if enc_dec:
            num_layers = num_layers * 2
        layers = []
        for i in range(num_layers):
            if i % 2 == 0 and enc_dec:  # cross
                layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
            elif enc_dec:  # self
                layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
            else:  # self or cross
                layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
        self.layers = nn.ModuleList(layers)


class TransformerMapper(nn.Module):

    def forward(self, x):
        x = self.linear(x).view(x.shape[0], self.clip_length, -1)
        prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
        prefix = torch.cat((x, prefix), dim=1)
        out = self.transformer(prefix)[:, self.clip_length:]
        return out

    def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8):
        super(TransformerMapper, self).__init__()
        self.clip_length = clip_length
        self.transformer = Transformer(dim_embedding, 8, num_layers)
        self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
        self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)


class ClipCaptionModel(nn.Module):

    def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
        return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)

    def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None,
                labels: Optional[torch.Tensor] = None):
        embedding_text = self.gpt.transformer.wte(tokens)
        if prefix is not None:
            prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
            embedding_text = torch.cat((prefix_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_text, labels=labels, attention_mask=mask)
        return out

    def __init__(self, prefix_length: int, clip_length: Optional[int] = None, prefix_size: int = 512,
                 num_layers: int = 8, mapping_type: MappingType = MappingType.MLP):
        super(ClipCaptionModel, self).__init__()
        self.prefix_size = prefix_size
        self.prefix_length = prefix_length
        self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        if mapping_type == MappingType.MLP:
            self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2,
                                     self.gpt_embedding_size * prefix_length))
        else:
            self.clip_project = TransformerMapper(prefix_size, self.gpt_embedding_size, prefix_length,
                                                                     clip_length, num_layers)
class ClipCaptionPrefix(ClipCaptionModel):
    def parameters(self, recurse: bool = True):
        return self.clip_project.parameters()

    def train(self, mode: bool = True):
        super(ClipCaptionPrefix, self).train(mode)
        self.gpt.eval()
        return self


def generate_beam(
    model,
    tokenizer,
    beam_size: int = 5,
    prompt=None,
    embed=None,
    #entry_length=67,
    entry_length=150,
    #temperature=1.0,
    temperature=0.7,
    stop_token: str = ".",
    no_repeat_ngram = 3,
    #no_repeat_ngram = None,
):

    model.eval()
    stop_token_index = tokenizer.encode(stop_token)[0]
    tokens = None
    scores = None
    device = next(model.parameters()).device
    seq_lengths = torch.ones(beam_size, device=device)
    is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
    filter_value = -float("Inf")
    with torch.no_grad():
        if embed is not None:
            generated = embed
        else:
            if tokens is None:
                tokens = torch.tensor(tokenizer.encode(prompt))
                tokens = tokens.unsqueeze(0).to(device)
                generated = model.gpt.transformer.wte(tokens)

        stop_seq = tokenizer.encode('<STOP>')

        for i in range(entry_length):
            outputs = model.gpt(inputs_embeds=generated)
            logits = outputs.logits
            logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
            logits = logits.softmax(-1).log()
            # prevent repeated ngrams
            if no_repeat_ngram is not None:
                if tokens is not None:
                    for b in range(beam_size):
                        tokens_list = tokens[b].tolist()
                        for idx in range(len(tokens_list) - no_repeat_ngram):
                            subseq = tokens_list[idx:idx+no_repeat_ngram]
                            if tokens_list[-no_repeat_ngram+1:] == subseq[:-1] and subseq[-1] not in stop_seq:
                                logits[b, subseq[-1]] = filter_value
            if scores is None:
                scores, next_tokens = logits.topk(beam_size, -1)
                generated = generated.expand(beam_size, *generated.shape[1:])
                next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
                if tokens is None:
                    tokens = next_tokens
                else:
                    tokens = tokens.expand(beam_size, *tokens.shape[1:])
                    tokens = torch.cat((tokens, next_tokens), dim=1)
            else:
                logits[is_stopped] = -float(np.inf)
                logits[is_stopped, 0] = 0
                scores_sum = scores[:, None] + logits
                seq_lengths[~is_stopped] += 1
                scores_sum_average = scores_sum / seq_lengths[:, None]
                scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
                    beam_size, -1
                )
                next_tokens_source = next_tokens // scores_sum.shape[1]
                seq_lengths = seq_lengths[next_tokens_source]
                next_tokens = next_tokens % scores_sum.shape[1]
                next_tokens = next_tokens.unsqueeze(1)
                tokens = tokens[next_tokens_source]
                tokens = torch.cat((tokens, next_tokens), dim=1)
                generated = generated[next_tokens_source]
                scores = scores_sum_average * seq_lengths
                is_stopped = is_stopped[next_tokens_source]
            next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
                generated.shape[0], 1, -1
            )
            generated = torch.cat((generated, next_token_embed), dim=1)
            is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
            if is_stopped.all():
                break
    scores = scores / seq_lengths
    output_list = tokens.cpu().numpy()
    output_texts = [
        tokenizer.decode(output[: int(length)])
        for output, length in zip(output_list, seq_lengths)
    ]
    order = scores.argsort(descending=True)
    output_texts = [output_texts[i] for i in order]
    return output_texts


def generate2(
    model,
    tokenizer,
    tokens=None,
    prompt=None,
    embed=None,
    entry_count=1,
    #entry_length=67,  # maximum number of words
    entry_length=150,  # maximum number of words
    top_p=0.8,
    nucleus=False,
    #temperature=1.0,
    temperature=0.7,
    stop_token: str = ".",
    no_repeat_ngram = 3,
):
    model.eval()
    generated_num = 0
    generated_list = []
    stop_token_index = tokenizer.encode(stop_token)[0]
    filter_value = -1e10
    device = next(model.parameters()).device

    with torch.no_grad():

        for entry_idx in range(entry_count):
            if embed is not None:
                generated = embed
            else:
                if tokens is None:
                    tokens = torch.tensor(tokenizer.encode(prompt))
                    tokens = tokens.unsqueeze(0).to(device)

                generated = model.gpt.transformer.wte(tokens)

            ngrams = defaultdict(lambda: set())
            stop_seq = tokenizer.encode('<STOP>')

            for i in range(entry_length):

                outputs = model.gpt(inputs_embeds=generated)
                logits = outputs.logits
                logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(
                    nnf.softmax(sorted_logits, dim=-1), dim=-1
                )
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
                    ..., :-1
                ].clone()
                sorted_indices_to_remove[..., 0] = 0

                indices_to_remove = sorted_indices[sorted_indices_to_remove]
                logits[:, indices_to_remove] = filter_value
                # remove any potential ngram repeats, unless part of <STOP>
                if no_repeat_ngram is not None:
                    if tokens is not None:
                        for token in ngrams[tuple(tokens[0][-no_repeat_ngram+1:].tolist())]:
                            if token not in stop_seq:
                                logits[:, token] = filter_value
                # either sample or argmax
                if nucleus:
                    distr = torch.distributions.categorical.Categorical(logits=logits.squeeze())
                    next_token = distr.sample().unsqueeze(0).unsqueeze(0)
                else:
                    next_token = torch.argmax(logits, -1).unsqueeze(0)
                next_token_embed = model.gpt.transformer.wte(next_token)
                if logits[:, next_token].item() == filter_value:
                    break
                # add to our set of ngrams
                if no_repeat_ngram is not None:
                    if tokens is not None and len(tokens[0]) >= no_repeat_ngram - 1:
                        ngrams[tuple(tokens[0][-no_repeat_ngram+1:].tolist())].add(next_token.item())
                if tokens is None:
                    tokens = next_token
                else:
                    tokens = torch.cat((tokens, next_token), dim=1)
                generated = torch.cat((generated, next_token_embed), dim=1)
                if stop_token_index == next_token.item():
                    break


            output_list = tokens.cpu().tolist()[0]
            output_text = tokenizer.decode(output_list)
            generated_list.append(output_text)

    return generated_list[0]