RGMC / clipcap.py
NikitaSrivatsan
First pass at captioning functionality through web app
48ac659
#####################################################################
### Credit: Ron Mokady / rmokady ###
### Original Repo: https://github.com/rmokady/CLIP_prefix_caption ###
#####################################################################
from enum import Enum
from collections import defaultdict
import os
from torch import nn
import numpy as np
import torch
import torch.nn.functional as nnf
import sys
from typing import Tuple, List, Union, Optional
from transformers import (
GPT2Tokenizer,
GPT2LMHeadModel,
AdamW,
get_linear_schedule_with_warmup,
)
# import torch
N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]
WEIGHTS_PATHS = {
"coco": "coco_weights.pt",
"conceptual-captions": "conceptual_weights.pt",
}
class MappingType(Enum):
MLP = 'mlp'
Transformer = 'transformer'
class MLP(nn.Module):
def forward(self, x: T) -> T:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) - 1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
class MlpTransformer(nn.Module):
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.):
super().__init__()
out_d = out_d if out_d is not None else in_dim
self.fc1 = nn.Linear(in_dim, h_dim)
self.act = act
self.fc2 = nn.Linear(h_dim, out_d)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim_self // num_heads
self.scale = head_dim ** -0.5
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
self.project = nn.Linear(dim_self, dim_self)
self.dropout = nn.Dropout(dropout)
def forward(self, x, y=None, mask=None):
y = y if y is not None else x
b, n, c = x.shape
_, m, d = y.shape
# b n h dh
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
# b m 2 h dh
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
if mask is not None:
if mask.dim() == 2:
mask = mask.unsqueeze(1)
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
attention = attention.softmax(dim=2)
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
out = self.project(out)
return out, attention
class TransformerLayer(nn.Module):
def forward_with_attention(self, x, y=None, mask=None):
x_, attention = self.attn(self.norm1(x), y, mask)
x = x + x_
x = x + self.mlp(self.norm2(x))
return x, attention
def forward(self, x, y=None, mask=None):
x = x + self.attn(self.norm1(x), y, mask)[0]
x = x + self.mlp(self.norm2(x))
return x
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu,
norm_layer: nn.Module = nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim_self)
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
self.norm2 = norm_layer(dim_self)
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
class Transformer(nn.Module):
def forward_with_attention(self, x, y=None, mask=None):
attentions = []
for layer in self.layers:
x, att = layer.forward_with_attention(x, y, mask)
attentions.append(att)
return x, attentions
def forward(self, x, y=None, mask=None):
for i, layer in enumerate(self.layers):
if i % 2 == 0 and self.enc_dec: # cross
x = layer(x, y)
elif self.enc_dec: # self
x = layer(x, x, mask)
else: # self or cross
x = layer(x, y, mask)
return x
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
super(Transformer, self).__init__()
dim_ref = dim_ref if dim_ref is not None else dim_self
self.enc_dec = enc_dec
if enc_dec:
num_layers = num_layers * 2
layers = []
for i in range(num_layers):
if i % 2 == 0 and enc_dec: # cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
elif enc_dec: # self
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
else: # self or cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
self.layers = nn.ModuleList(layers)
class TransformerMapper(nn.Module):
def forward(self, x):
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
prefix = torch.cat((x, prefix), dim=1)
out = self.transformer(prefix)[:, self.clip_length:]
return out
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8):
super(TransformerMapper, self).__init__()
self.clip_length = clip_length
self.transformer = Transformer(dim_embedding, 8, num_layers)
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)
class ClipCaptionModel(nn.Module):
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None):
embedding_text = self.gpt.transformer.wte(tokens)
if prefix is not None:
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
embedding_text = torch.cat((prefix_projections, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
labels = torch.cat((dummy_token, tokens), dim=1)
out = self.gpt(inputs_embeds=embedding_text, labels=labels, attention_mask=mask)
return out
def __init__(self, prefix_length: int, clip_length: Optional[int] = None, prefix_size: int = 512,
num_layers: int = 8, mapping_type: MappingType = MappingType.MLP):
super(ClipCaptionModel, self).__init__()
self.prefix_size = prefix_size
self.prefix_length = prefix_length
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
if mapping_type == MappingType.MLP:
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2,
self.gpt_embedding_size * prefix_length))
else:
self.clip_project = TransformerMapper(prefix_size, self.gpt_embedding_size, prefix_length,
clip_length, num_layers)
class ClipCaptionPrefix(ClipCaptionModel):
def parameters(self, recurse: bool = True):
return self.clip_project.parameters()
def train(self, mode: bool = True):
super(ClipCaptionPrefix, self).train(mode)
self.gpt.eval()
return self
def generate_beam(
model,
tokenizer,
beam_size: int = 5,
prompt=None,
embed=None,
#entry_length=67,
entry_length=150,
#temperature=1.0,
temperature=0.7,
stop_token: str = ".",
no_repeat_ngram = 3,
#no_repeat_ngram = None,
):
model.eval()
stop_token_index = tokenizer.encode(stop_token)[0]
tokens = None
scores = None
device = next(model.parameters()).device
seq_lengths = torch.ones(beam_size, device=device)
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
filter_value = -float("Inf")
with torch.no_grad():
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = model.gpt.transformer.wte(tokens)
stop_seq = tokenizer.encode('<STOP>')
for i in range(entry_length):
outputs = model.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
logits = logits.softmax(-1).log()
# prevent repeated ngrams
if no_repeat_ngram is not None:
if tokens is not None:
for b in range(beam_size):
tokens_list = tokens[b].tolist()
for idx in range(len(tokens_list) - no_repeat_ngram):
subseq = tokens_list[idx:idx+no_repeat_ngram]
if tokens_list[-no_repeat_ngram+1:] == subseq[:-1] and subseq[-1] not in stop_seq:
logits[b, subseq[-1]] = filter_value
if scores is None:
scores, next_tokens = logits.topk(beam_size, -1)
generated = generated.expand(beam_size, *generated.shape[1:])
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
if tokens is None:
tokens = next_tokens
else:
tokens = tokens.expand(beam_size, *tokens.shape[1:])
tokens = torch.cat((tokens, next_tokens), dim=1)
else:
logits[is_stopped] = -float(np.inf)
logits[is_stopped, 0] = 0
scores_sum = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
scores_sum_average = scores_sum / seq_lengths[:, None]
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
beam_size, -1
)
next_tokens_source = next_tokens // scores_sum.shape[1]
seq_lengths = seq_lengths[next_tokens_source]
next_tokens = next_tokens % scores_sum.shape[1]
next_tokens = next_tokens.unsqueeze(1)
tokens = tokens[next_tokens_source]
tokens = torch.cat((tokens, next_tokens), dim=1)
generated = generated[next_tokens_source]
scores = scores_sum_average * seq_lengths
is_stopped = is_stopped[next_tokens_source]
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
generated.shape[0], 1, -1
)
generated = torch.cat((generated, next_token_embed), dim=1)
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
if is_stopped.all():
break
scores = scores / seq_lengths
output_list = tokens.cpu().numpy()
output_texts = [
tokenizer.decode(output[: int(length)])
for output, length in zip(output_list, seq_lengths)
]
order = scores.argsort(descending=True)
output_texts = [output_texts[i] for i in order]
return output_texts
def generate2(
model,
tokenizer,
tokens=None,
prompt=None,
embed=None,
entry_count=1,
#entry_length=67, # maximum number of words
entry_length=150, # maximum number of words
top_p=0.8,
nucleus=False,
#temperature=1.0,
temperature=0.7,
stop_token: str = ".",
no_repeat_ngram = 3,
):
model.eval()
generated_num = 0
generated_list = []
stop_token_index = tokenizer.encode(stop_token)[0]
filter_value = -1e10
device = next(model.parameters()).device
with torch.no_grad():
for entry_idx in range(entry_count):
if embed is not None:
generated = embed
else:
if tokens is None:
tokens = torch.tensor(tokenizer.encode(prompt))
tokens = tokens.unsqueeze(0).to(device)
generated = model.gpt.transformer.wte(tokens)
ngrams = defaultdict(lambda: set())
stop_seq = tokenizer.encode('<STOP>')
for i in range(entry_length):
outputs = model.gpt(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(
nnf.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = filter_value
# remove any potential ngram repeats, unless part of <STOP>
if no_repeat_ngram is not None:
if tokens is not None:
for token in ngrams[tuple(tokens[0][-no_repeat_ngram+1:].tolist())]:
if token not in stop_seq:
logits[:, token] = filter_value
# either sample or argmax
if nucleus:
distr = torch.distributions.categorical.Categorical(logits=logits.squeeze())
next_token = distr.sample().unsqueeze(0).unsqueeze(0)
else:
next_token = torch.argmax(logits, -1).unsqueeze(0)
next_token_embed = model.gpt.transformer.wte(next_token)
if logits[:, next_token].item() == filter_value:
break
# add to our set of ngrams
if no_repeat_ngram is not None:
if tokens is not None and len(tokens[0]) >= no_repeat_ngram - 1:
ngrams[tuple(tokens[0][-no_repeat_ngram+1:].tolist())].add(next_token.item())
if tokens is None:
tokens = next_token
else:
tokens = torch.cat((tokens, next_token), dim=1)
generated = torch.cat((generated, next_token_embed), dim=1)
if stop_token_index == next_token.item():
break
output_list = tokens.cpu().tolist()[0]
output_text = tokenizer.decode(output_list)
generated_list.append(output_text)
return generated_list[0]