peder
commited on
Commit
·
9feb130
1
Parent(s):
45d07a3
second
Browse files
app.py
CHANGED
@@ -1,10 +1,270 @@
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
if __name__ == '__main__':
|
10 |
-
|
|
|
1 |
+
import random
|
2 |
+
import os
|
3 |
+
from urllib.parse import urlencode
|
4 |
+
|
5 |
import streamlit as st
|
6 |
+
import streamlit.components.v1 as components
|
7 |
+
import torch
|
8 |
+
from transformers import pipeline, set_seed
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
|
11 |
+
|
12 |
+
HF_AUTH_TOKEN = "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"
|
13 |
+
DEVICE = os.environ.get("cuda:0", "cpu") # cuda:0
|
14 |
+
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
|
15 |
+
MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-alpaca")
|
16 |
+
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))
|
17 |
+
print("hello Boys")
|
18 |
+
HEADER_INFO = """
|
19 |
+
# CBS_Alpaca-GPT-j
|
20 |
+
Norwegian GPT-J-6B NorPaca Model.
|
21 |
+
""".strip()
|
22 |
+
LOGO = "https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Logo_CopenhagenBusinessSchool.svg/1200px-Logo_CopenhagenBusinessSchool.svg.png"
|
23 |
+
SIDEBAR_INFO = f"""
|
24 |
+
<div align=center>
|
25 |
+
<img src="{LOGO}" width=100/>
|
26 |
+
|
27 |
+
# NB-GPT-J-6B-NorPaca
|
28 |
+
|
29 |
+
</div>
|
30 |
+
|
31 |
+
NB-GPT-J-6B NorPaca is a hybrid of a GPT-3 and Llama model, trained on the Norwegian Colossal Corpus and other Internet sources. It is a 6.7 billion parameter model, and is the largest model in the GPT-J family.
|
32 |
+
|
33 |
+
This model has been trained with [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) using TPUs provided by Google through the Tensor Research Cloud program, starting off the [GPT-J-6B model weigths from EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B), and trained on the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) and other Internet sources. *This demo runs on {DEVICE.split(':')[0].upper()}*.
|
34 |
+
|
35 |
+
For more information, visit the [model repository](https://huggingface.co/CBSMasterThesis).
|
36 |
+
|
37 |
+
## Configuration
|
38 |
+
""".strip()
|
39 |
+
PROMPT_BOX = "Enter your text..."
|
40 |
+
EXAMPLES = [
|
41 |
+
"Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Analyser fordelene ved å jobbe i et team. ### Respons:",
|
42 |
+
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Oppsummer den faglige artikkelen "Kunstig intelligens og arbeidets fremtid". ### Respons:',
|
43 |
+
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Generer et kreativt slagord for en bedrift som bruker fornybare energikilder. ### Respons:',
|
44 |
+
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Regn ut arealet av en firkant med lengde 10m. Skriv ut et flyttall. ### Respons:',
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
def style():
|
49 |
+
st.markdown("""
|
50 |
+
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
|
51 |
+
<style>
|
52 |
+
.ltr,
|
53 |
+
textarea {
|
54 |
+
font-family: Roboto !important;
|
55 |
+
text-align: left;
|
56 |
+
direction: ltr !important;
|
57 |
+
}
|
58 |
+
.ltr-box {
|
59 |
+
border-bottom: 1px solid #ddd;
|
60 |
+
padding-bottom: 20px;
|
61 |
+
}
|
62 |
+
.rtl {
|
63 |
+
text-align: left;
|
64 |
+
direction: ltr !important;
|
65 |
+
}
|
66 |
+
span.result-text {
|
67 |
+
padding: 3px 3px;
|
68 |
+
line-height: 32px;
|
69 |
+
}
|
70 |
+
span.generated-text {
|
71 |
+
background-color: rgb(118 200 147 / 13%);
|
72 |
+
}
|
73 |
+
</style>""", unsafe_allow_html=True)
|
74 |
+
|
75 |
+
|
76 |
+
class Normalizer:
|
77 |
+
def remove_repetitions(self, text):
|
78 |
+
"""Remove repetitions"""
|
79 |
+
first_ocurrences = []
|
80 |
+
for sentence in text.split("."):
|
81 |
+
if sentence not in first_ocurrences:
|
82 |
+
first_ocurrences.append(sentence)
|
83 |
+
return '.'.join(first_ocurrences)
|
84 |
+
|
85 |
+
def trim_last_sentence(self, text):
|
86 |
+
"""Trim last sentence if incomplete"""
|
87 |
+
return text[:text.rfind(".") + 1]
|
88 |
+
|
89 |
+
def clean_txt(self, text):
|
90 |
+
return self.trim_last_sentence(self.remove_repetitions(text))
|
91 |
+
|
92 |
+
|
93 |
+
class TextGeneration:
|
94 |
+
def __init__(self):
|
95 |
+
self.tokenizer = None
|
96 |
+
self.generator = None
|
97 |
+
self.task = "text-generation"
|
98 |
+
self.model_name_or_path = MODEL_NAME
|
99 |
+
set_seed(42)
|
100 |
+
|
101 |
+
def load(self):
|
102 |
+
print("Loading model... ", end="")
|
103 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
104 |
+
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
|
105 |
+
)
|
106 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
107 |
+
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
|
108 |
+
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
|
109 |
+
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
|
110 |
+
).to(device=DEVICE, non_blocking=True)
|
111 |
+
_ = self.model.eval()
|
112 |
+
device_number = -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
|
113 |
+
self.generator = pipeline(
|
114 |
+
self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
|
115 |
+
print("Done")
|
116 |
+
# with torch.no_grad():
|
117 |
+
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
|
118 |
+
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
|
119 |
+
# generated = tokenizer.batch_decode(gen_tokens)[0]
|
120 |
+
|
121 |
+
# return generated
|
122 |
+
|
123 |
+
def generate(self, prompt, generation_kwargs):
|
124 |
+
max_length = len(self.tokenizer(prompt)[
|
125 |
+
"input_ids"]) + generation_kwargs["max_length"]
|
126 |
+
generation_kwargs["max_length"] = min(
|
127 |
+
max_length, self.model.config.n_positions)
|
128 |
+
# generation_kwargs["num_return_sequences"] = 1
|
129 |
+
# generation_kwargs["return_full_text"] = False
|
130 |
+
return self.generator(
|
131 |
+
prompt,
|
132 |
+
**generation_kwargs,
|
133 |
+
)[0]["generated_text"]
|
134 |
+
|
135 |
+
|
136 |
+
# @st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
|
137 |
+
@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
|
138 |
+
def load_text_generator():
|
139 |
+
generator = TextGeneration()
|
140 |
+
generator.load()
|
141 |
+
return generator
|
142 |
+
|
143 |
+
|
144 |
+
def main():
|
145 |
+
st.set_page_config(
|
146 |
+
page_title="NB-GPT-J-6B-NorPaca",
|
147 |
+
page_icon="🇳🇴",
|
148 |
+
layout="wide",
|
149 |
+
initial_sidebar_state="expanded"
|
150 |
+
)
|
151 |
+
style()
|
152 |
+
with st.spinner('Loading the model. Please, wait...'):
|
153 |
+
generator = load_text_generator()
|
154 |
+
|
155 |
+
st.sidebar.markdown(SIDEBAR_INFO, unsafe_allow_html=True)
|
156 |
+
query_params = st.experimental_get_query_params()
|
157 |
+
if query_params:
|
158 |
+
st.experimental_set_query_params(**dict())
|
159 |
+
|
160 |
+
max_length = st.sidebar.slider(
|
161 |
+
label='Max words to generate',
|
162 |
+
help="The maximum length of the sequence to be generated.",
|
163 |
+
min_value=1,
|
164 |
+
max_value=MAX_LENGTH,
|
165 |
+
value=int(query_params.get("max_length", [50])[0]),
|
166 |
+
step=1
|
167 |
+
)
|
168 |
+
top_k = st.sidebar.slider(
|
169 |
+
label='Top-k',
|
170 |
+
help="The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
171 |
+
min_value=40,
|
172 |
+
max_value=80,
|
173 |
+
value=int(query_params.get("top_k", [50])[0]),
|
174 |
+
step=1
|
175 |
+
)
|
176 |
+
top_p = st.sidebar.slider(
|
177 |
+
label='Top-p',
|
178 |
+
help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for "
|
179 |
+
"generation.",
|
180 |
+
min_value=0.0,
|
181 |
+
max_value=1.0,
|
182 |
+
value=float(query_params.get("top_p", [0.95])[0]),
|
183 |
+
step=0.01
|
184 |
+
)
|
185 |
+
temperature = st.sidebar.slider(
|
186 |
+
label='Temperature',
|
187 |
+
help="The value used to module the next token probabilities",
|
188 |
+
min_value=0.1,
|
189 |
+
max_value=10.0,
|
190 |
+
value=float(query_params.get("temperature", [0.8])[0]),
|
191 |
+
step=0.05
|
192 |
+
)
|
193 |
+
do_sample = st.sidebar.selectbox(
|
194 |
+
label='Sampling?',
|
195 |
+
options=(False, True),
|
196 |
+
help="Whether or not to use sampling; use greedy decoding otherwise.",
|
197 |
+
index=int(query_params.get("do_sample", ["true"])[
|
198 |
+
0].lower()[0] in ("t", "y", "1")),
|
199 |
+
)
|
200 |
+
do_clean = st.sidebar.selectbox(
|
201 |
+
label='Clean text?',
|
202 |
+
options=(False, True),
|
203 |
+
help="Whether or not to remove repeated words and trim unfinished last sentences.",
|
204 |
+
index=int(query_params.get("do_clean", ["true"])[
|
205 |
+
0].lower()[0] in ("t", "y", "1")),
|
206 |
+
)
|
207 |
+
generation_kwargs = {
|
208 |
+
"max_length": max_length,
|
209 |
+
"top_k": top_k,
|
210 |
+
"top_p": top_p,
|
211 |
+
"temperature": temperature,
|
212 |
+
"do_sample": do_sample,
|
213 |
+
"do_clean": do_clean,
|
214 |
+
}
|
215 |
+
st.markdown(HEADER_INFO)
|
216 |
+
prompts = EXAMPLES + ["Custom"]
|
217 |
+
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
|
218 |
|
219 |
+
if prompt == "Custom":
|
220 |
+
prompt_box = query_params.get("text", [PROMPT_BOX])[0].strip()
|
221 |
+
else:
|
222 |
+
prompt_box = prompt
|
223 |
|
224 |
+
text = st.text_area("Enter text", prompt_box)
|
225 |
+
generation_kwargs_ph = st.empty()
|
226 |
+
cleaner = Normalizer()
|
227 |
+
if st.button("Generate!") or text != PROMPT_BOX:
|
228 |
+
output = st.empty()
|
229 |
+
with st.spinner(text="Generating..."):
|
230 |
+
generation_kwargs_ph.markdown(
|
231 |
+
", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
|
232 |
+
if text:
|
233 |
+
share_args = {"text": text, **generation_kwargs}
|
234 |
+
st.experimental_set_query_params(**share_args)
|
235 |
+
for _ in range(5):
|
236 |
+
generated_text = generator.generate(
|
237 |
+
text, generation_kwargs)
|
238 |
+
if do_clean:
|
239 |
+
generated_text = cleaner.clean_txt(generated_text)
|
240 |
+
if generated_text.strip().startswith(text):
|
241 |
+
generated_text = generated_text.replace(
|
242 |
+
text, "", 1).strip()
|
243 |
+
output.markdown(
|
244 |
+
f'<p class="ltr ltr-box">'
|
245 |
+
f'<span class="result-text">{text} <span>'
|
246 |
+
f'<span class="result-text generated-text">{generated_text}</span>'
|
247 |
+
f'</p>',
|
248 |
+
unsafe_allow_html=True
|
249 |
+
)
|
250 |
+
if generated_text.strip():
|
251 |
+
components.html(
|
252 |
+
f"""
|
253 |
+
<a class="twitter-share-button"
|
254 |
+
data-text="Check my prompt using NB-GPT-J-6B-NorPaca!🇳🇴 https://ai.nb.no/demo/nb-gpt-j-6B-NorPaca/?{urlencode(share_args)}"
|
255 |
+
data-show-count="false">
|
256 |
+
data-size="Small"
|
257 |
+
data-hashtags="nb,gpt-j"
|
258 |
+
Tweet
|
259 |
+
</a>
|
260 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
|
261 |
+
"""
|
262 |
+
)
|
263 |
+
break
|
264 |
+
if not generated_text.strip():
|
265 |
+
st.markdown(
|
266 |
+
"*Tried 5 times but did not produce any result. Try again!*")
|
267 |
|
268 |
|
269 |
if __name__ == '__main__':
|
270 |
+
main()
|