peder
commited on
Commit
·
b08d994
1
Parent(s):
c18b92f
cache added
Browse files- app.py +2 -0
- app.py.d264c618bf578cebbd21d2c2379d7b50.tmp +0 -321
app.py
CHANGED
@@ -107,6 +107,7 @@ class TextGeneration:
|
|
107 |
self.model_name_or_path = MODEL_NAME
|
108 |
set_seed(42)
|
109 |
|
|
|
110 |
def load(self):
|
111 |
print("Loading model... ", end="")
|
112 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
@@ -168,6 +169,7 @@ def generate_prompt(instruction, input=None):
|
|
168 |
|
169 |
# @st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
|
170 |
# @st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
|
|
|
171 |
def load_text_generator():
|
172 |
generator = TextGeneration()
|
173 |
generator.load()
|
|
|
107 |
self.model_name_or_path = MODEL_NAME
|
108 |
set_seed(42)
|
109 |
|
110 |
+
@st.cache_resource
|
111 |
def load(self):
|
112 |
print("Loading model... ", end="")
|
113 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
169 |
|
170 |
# @st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
|
171 |
# @st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
|
172 |
+
#@st.cache_resource
|
173 |
def load_text_generator():
|
174 |
generator = TextGeneration()
|
175 |
generator.load()
|
app.py.d264c618bf578cebbd21d2c2379d7b50.tmp
DELETED
@@ -1,321 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
import os
|
3 |
-
from urllib.parse import urlencode
|
4 |
-
#from pyngrok import ngrok
|
5 |
-
|
6 |
-
import streamlit as st
|
7 |
-
import streamlit.components.v1 as components
|
8 |
-
import torch
|
9 |
-
from transformers import pipeline, set_seed
|
10 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
-
|
12 |
-
# #import torch
|
13 |
-
# print(f"Is CUDA available: {torch.cuda.is_available()}")
|
14 |
-
# # True
|
15 |
-
# print(
|
16 |
-
# f"CUDA device for you Perrito: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
17 |
-
# # Tesla T4
|
18 |
-
|
19 |
-
HF_AUTH_TOKEN = "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"
|
20 |
-
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
#print("DEVICE SENOOOOOR", DEVICE)
|
22 |
-
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
|
23 |
-
MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-alpaca")
|
24 |
-
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))
|
25 |
-
|
26 |
-
HEADER_INFO = """
|
27 |
-
# GPT-NorPaca
|
28 |
-
Norwegian GPT-J-6B NorPaca Model.
|
29 |
-
""".strip()
|
30 |
-
LOGO = "https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Logo_CopenhagenBusinessSchool.svg/1200px-Logo_CopenhagenBusinessSchool.svg.png"
|
31 |
-
SIDEBAR_INFO = f"""
|
32 |
-
<div align=center>
|
33 |
-
<img src="{LOGO}" width=100/>
|
34 |
-
|
35 |
-
# NB-GPT-J-6B-NorPaca
|
36 |
-
|
37 |
-
</div>
|
38 |
-
|
39 |
-
NB-GPT-J-6B NorPaca is a hybrid of a GPT-3 and Llama model, trained on the Norwegian Colossal Corpus and other Internet sources. It is a 6.7 billion parameter model, and is the largest model in the GPT-J family.
|
40 |
-
|
41 |
-
This model has been trained with [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) using TPUs provided by Google through the Tensor Research Cloud program, starting off the [GPT-J-6B model weigths from EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B), and trained on the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) and other Internet sources. *This demo runs on {DEVICE}*.
|
42 |
-
|
43 |
-
For more information, visit the [model repository](https://huggingface.co/CBSMasterThesis).
|
44 |
-
|
45 |
-
## Configuration
|
46 |
-
""".strip()
|
47 |
-
PROMPT_BOX_INSTRUCTION = "Enter your Instructions here..."
|
48 |
-
PROMPT_BOX_INPUT = "Enter your Input here..."
|
49 |
-
EXAMPLES = [
|
50 |
-
"Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Analyser fordelene ved å jobbe i et team. ### Respons:",
|
51 |
-
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Oppsummer den faglige artikkelen "Kunstig intelligens og arbeidets fremtid". ### Respons:',
|
52 |
-
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Generer et kreativt slagord for en bedrift som bruker fornybare energikilder. ### Respons:',
|
53 |
-
'Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte. ### Instruksjon: Regn ut arealet av en firkant med lengde 10m. Skriv ut et flyttall. ### Respons:',
|
54 |
-
]
|
55 |
-
|
56 |
-
|
57 |
-
def style():
|
58 |
-
st.markdown("""
|
59 |
-
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
|
60 |
-
<style>
|
61 |
-
.ltr,
|
62 |
-
textarea {
|
63 |
-
font-family: Roboto !important;
|
64 |
-
text-align: left;
|
65 |
-
direction: ltr !important;
|
66 |
-
}
|
67 |
-
.ltr-box {
|
68 |
-
border-bottom: 1px solid #ddd;
|
69 |
-
padding-bottom: 20px;
|
70 |
-
}
|
71 |
-
.rtl {
|
72 |
-
text-align: left;
|
73 |
-
direction: ltr !important;
|
74 |
-
}
|
75 |
-
span.result-text {
|
76 |
-
padding: 3px 3px;
|
77 |
-
line-height: 32px;
|
78 |
-
}
|
79 |
-
span.generated-text {
|
80 |
-
background-color: rgb(118 200 147 / 13%);
|
81 |
-
}
|
82 |
-
</style>""", unsafe_allow_html=True)
|
83 |
-
|
84 |
-
|
85 |
-
class Normalizer:
|
86 |
-
def remove_repetitions(self, text):
|
87 |
-
"""Remove repetitions"""
|
88 |
-
first_ocurrences = []
|
89 |
-
for sentence in text.split("."):
|
90 |
-
if sentence not in first_ocurrences:
|
91 |
-
first_ocurrences.append(sentence)
|
92 |
-
return '.'.join(first_ocurrences)
|
93 |
-
|
94 |
-
def trim_last_sentence(self, text):
|
95 |
-
"""Trim last sentence if incomplete"""
|
96 |
-
return text[:text.rfind(".") + 1]
|
97 |
-
|
98 |
-
def clean_txt(self, text):
|
99 |
-
return self.trim_last_sentence(self.remove_repetitions(text))
|
100 |
-
|
101 |
-
|
102 |
-
class TextGeneration:
|
103 |
-
def __init__(self):
|
104 |
-
self.tokenizer = None
|
105 |
-
self.generator = None
|
106 |
-
self.task = "text-generation"
|
107 |
-
self.model_name_or_path = MODEL_NAME
|
108 |
-
set_seed(42)
|
109 |
-
|
110 |
-
def load(self):
|
111 |
-
print("Loading model... ", end="")
|
112 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
113 |
-
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
|
114 |
-
)
|
115 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
116 |
-
self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
|
117 |
-
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
|
118 |
-
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
|
119 |
-
).to(device=DEVICE, non_blocking=True)
|
120 |
-
_ = self.model.eval()
|
121 |
-
# -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
|
122 |
-
device_number = torch.cuda.current_device()
|
123 |
-
self.generator = pipeline(
|
124 |
-
self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
|
125 |
-
print("Done")
|
126 |
-
# with torch.no_grad():
|
127 |
-
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
|
128 |
-
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
|
129 |
-
# generated = tokenizer.batch_decode(gen_tokens)[0]
|
130 |
-
|
131 |
-
# return generated
|
132 |
-
|
133 |
-
def generate(self, prompt, generation_kwargs):
|
134 |
-
max_length = len(self.tokenizer(prompt)[
|
135 |
-
"input_ids"]) + generation_kwargs["max_length"]
|
136 |
-
generation_kwargs["max_length"] = min(
|
137 |
-
max_length, self.model.config.n_positions)
|
138 |
-
# generation_kwargs["num_return_sequences"] = 1
|
139 |
-
# generation_kwargs["return_full_text"] = False
|
140 |
-
return self.generator(
|
141 |
-
prompt,
|
142 |
-
**generation_kwargs,
|
143 |
-
)[0]["generated_text"]
|
144 |
-
|
145 |
-
# Generate responses
|
146 |
-
|
147 |
-
|
148 |
-
def generate_prompt(instruction, input=None):
|
149 |
-
if input:
|
150 |
-
prompt = f"""Nedenfor er en instruksjon som beskriver en oppgave, sammen med et input som gir ytterligere kontekst. Skriv et svar som fullfører forespørselen på riktig måte.
|
151 |
-
|
152 |
-
### Instruksjon:
|
153 |
-
{instruction}
|
154 |
-
|
155 |
-
### Input:
|
156 |
-
{input}
|
157 |
-
|
158 |
-
### Respons:"""
|
159 |
-
else:
|
160 |
-
prompt = f""""Nedenfor er en instruksjon som beskriver en oppgave. Skriv et svar som fullfører forespørselen på riktig måte.
|
161 |
-
|
162 |
-
### Instruksjon:
|
163 |
-
{instruction}
|
164 |
-
|
165 |
-
### Respons:"""
|
166 |
-
return prompt
|
167 |
-
|
168 |
-
|
169 |
-
# @st.cache(allow_output_mutation=True, hash_funcs={AutoModelForCausalLM: lambda _: None})
|
170 |
-
# @st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
|
171 |
-
def load_text_generator():
|
172 |
-
generator = TextGeneration()
|
173 |
-
generator.load()
|
174 |
-
return generator
|
175 |
-
|
176 |
-
|
177 |
-
def main():
|
178 |
-
st.set_page_config(
|
179 |
-
page_title="NB-GPT-J-6B-NorPaca",
|
180 |
-
page_icon="🇳🇴",
|
181 |
-
layout="wide",
|
182 |
-
initial_sidebar_state="expanded"
|
183 |
-
)
|
184 |
-
style()
|
185 |
-
with st.spinner('Loading the model. Please, wait...'):
|
186 |
-
generator = load_text_generator()
|
187 |
-
|
188 |
-
st.sidebar.markdown(SIDEBAR_INFO, unsafe_allow_html=True)
|
189 |
-
query_params = st.experimental_get_query_params()
|
190 |
-
if query_params:
|
191 |
-
st.experimental_set_query_params(**dict())
|
192 |
-
|
193 |
-
max_length = st.sidebar.slider(
|
194 |
-
label='Max words to generate',
|
195 |
-
help="The maximum length of the sequence to be generated.",
|
196 |
-
min_value=1,
|
197 |
-
max_value=MAX_LENGTH,
|
198 |
-
value=int(query_params.get("max_length", [50])[0]),
|
199 |
-
step=1
|
200 |
-
)
|
201 |
-
top_k = st.sidebar.slider(
|
202 |
-
label='Top-k',
|
203 |
-
help="The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
204 |
-
min_value=40,
|
205 |
-
max_value=80,
|
206 |
-
value=int(query_params.get("top_k", [50])[0]),
|
207 |
-
step=1
|
208 |
-
)
|
209 |
-
top_p = st.sidebar.slider(
|
210 |
-
label='Top-p',
|
211 |
-
help="Only the most probable tokens with probabilities that add up to `top_p` or higher are kept for "
|
212 |
-
"generation.",
|
213 |
-
min_value=0.0,
|
214 |
-
max_value=1.0,
|
215 |
-
value=float(query_params.get("top_p", [0.75])[0]),
|
216 |
-
step=0.01
|
217 |
-
)
|
218 |
-
temperature = st.sidebar.slider(
|
219 |
-
label='Temperature',
|
220 |
-
help="The value used to module the next token probabilities",
|
221 |
-
min_value=0.1,
|
222 |
-
max_value=10.0,
|
223 |
-
value=float(query_params.get("temperature", [0.2])[0]),
|
224 |
-
step=0.05
|
225 |
-
)
|
226 |
-
do_sample = st.sidebar.selectbox(
|
227 |
-
label='Sampling?',
|
228 |
-
options=(False, True),
|
229 |
-
help="Whether or not to use sampling; use greedy decoding otherwise.",
|
230 |
-
index=int(query_params.get("do_sample", ["true"])[
|
231 |
-
0].lower()[0] in ("t", "y", "1")),
|
232 |
-
)
|
233 |
-
generation_kwargs = {
|
234 |
-
"max_length": max_length,
|
235 |
-
"top_k": top_k,
|
236 |
-
"top_p": top_p,
|
237 |
-
"temperature": temperature,
|
238 |
-
"do_sample": do_sample,
|
239 |
-
# "do_clean": do_clean,
|
240 |
-
}
|
241 |
-
st.markdown(HEADER_INFO)
|
242 |
-
prompts = EXAMPLES + ["Custom"]
|
243 |
-
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
|
244 |
-
|
245 |
-
if prompt == "Custom":
|
246 |
-
prompt_box_instruction = query_params.get(
|
247 |
-
"text1", [PROMPT_BOX_INSTRUCTION])[0].strip()
|
248 |
-
prompt_box_input = query_params.get(
|
249 |
-
"text2", [PROMPT_BOX_INPUT])[0].strip()
|
250 |
-
prompt_box = f"{prompt_box_instruction} {prompt_box_input}"
|
251 |
-
else:
|
252 |
-
if "### Input:" in prompt:
|
253 |
-
prompt_box_instruction = prompt.split("### Instruksjon:")[
|
254 |
-
1].split("### Input:")[0].strip()
|
255 |
-
prompt_box_input = prompt.split(
|
256 |
-
"### Input:")[1].split("### Respons:")[0].strip()
|
257 |
-
else:
|
258 |
-
prompt_box_instruction = prompt.split(
|
259 |
-
"### Instruksjon:")[1].split("### Respons:")[0].strip()
|
260 |
-
prompt_box_input = None
|
261 |
-
prompt_box = prompt
|
262 |
-
|
263 |
-
if prompt == "Custom":
|
264 |
-
text_instruction = st.text_area(
|
265 |
-
"Enter Instruction", PROMPT_BOX_INSTRUCTION)
|
266 |
-
text_input = st.text_area("Enter Input", PROMPT_BOX_INPUT)
|
267 |
-
else:
|
268 |
-
text_instruction = st.text_area(
|
269 |
-
"Enter Instruction", prompt_box_instruction)
|
270 |
-
text_input = st.text_area("Enter Input", prompt_box_input) if "### Input:" in prompt else st.text_area(
|
271 |
-
"Enter Input", PROMPT_BOX_INPUT)
|
272 |
-
|
273 |
-
generation_kwargs_ph = st.empty()
|
274 |
-
cleaner = Normalizer()
|
275 |
-
if st.button("Generate!"):
|
276 |
-
output = st.empty()
|
277 |
-
with st.spinner(text="Generating..."):
|
278 |
-
generation_kwargs_ph.markdown(
|
279 |
-
", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
|
280 |
-
if text_instruction:
|
281 |
-
text = generate_prompt(text_instruction, text_input) if text_input != "Enter your Input here..." else generate_prompt(
|
282 |
-
text_instruction)
|
283 |
-
#print("TEXT OUT", text)
|
284 |
-
share_args = {"text": text, **generation_kwargs}
|
285 |
-
st.experimental_set_query_params(**share_args)
|
286 |
-
for _ in range(5):
|
287 |
-
generated_text = generator.generate(
|
288 |
-
text, generation_kwargs)
|
289 |
-
# if do_clean:
|
290 |
-
# generated_text = cleaner.clean_txt(generated_text)
|
291 |
-
if generated_text.strip().startswith(text):
|
292 |
-
generated_text = generated_text.replace(
|
293 |
-
text, "", 1).strip()
|
294 |
-
output.markdown(
|
295 |
-
f'<p class="ltr ltr-box">'
|
296 |
-
f'<span class="result-text">{text} <span>'
|
297 |
-
f'<span class="result-text generated-text">{generated_text}</span>'
|
298 |
-
f'</p>',
|
299 |
-
unsafe_allow_html=True
|
300 |
-
)
|
301 |
-
if generated_text.strip():
|
302 |
-
components.html(
|
303 |
-
f"""
|
304 |
-
<a class="twitter-share-button"
|
305 |
-
data-text="Check my prompt using NB-GPT-J-6B-NorPaca!🇳🇴 https://ai.nb.no/demo/nb-gpt-j-6B-NorPaca/?{urlencode(share_args)}"
|
306 |
-
data-show-count="false">
|
307 |
-
data-size="Small"
|
308 |
-
data-hashtags="nb,gpt-j"
|
309 |
-
Tweet
|
310 |
-
</a>
|
311 |
-
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
|
312 |
-
"""
|
313 |
-
)
|
314 |
-
break
|
315 |
-
if not generated_text.strip():
|
316 |
-
st.markdown(
|
317 |
-
"*Tried 5 times but did not produce any result. Try again!*")
|
318 |
-
|
319 |
-
|
320 |
-
if __name__ == '__main__':
|
321 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|