ptdataScience commited on
Commit
b3a62f4
·
1 Parent(s): 8bc3df2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -13
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import random
2
  import os
3
  from urllib.parse import urlencode
 
4
 
5
  import streamlit as st
6
  import streamlit.components.v1 as components
@@ -12,9 +13,9 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
12
  HF_AUTH_TOKEN = "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"
13
  DEVICE = os.environ.get("cuda:0", "cpu") # cuda:0
14
  DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
15
- MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-norpaca")
16
  MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))
17
- print("hello Boys")
18
  HEADER_INFO = """
19
  # CBS_Alpaca-GPT-j
20
  Norwegian GPT-J-6B NorPaca Model.
@@ -197,20 +198,20 @@ def main():
197
  index=int(query_params.get("do_sample", ["true"])[
198
  0].lower()[0] in ("t", "y", "1")),
199
  )
200
- do_clean = st.sidebar.selectbox(
201
- label='Clean text?',
202
- options=(False, True),
203
- help="Whether or not to remove repeated words and trim unfinished last sentences.",
204
- index=int(query_params.get("do_clean", ["true"])[
205
- 0].lower()[0] in ("t", "y", "1")),
206
- )
207
  generation_kwargs = {
208
  "max_length": max_length,
209
  "top_k": top_k,
210
  "top_p": top_p,
211
  "temperature": temperature,
212
  "do_sample": do_sample,
213
- "do_clean": do_clean,
214
  }
215
  st.markdown(HEADER_INFO)
216
  prompts = EXAMPLES + ["Custom"]
@@ -235,8 +236,8 @@ def main():
235
  for _ in range(5):
236
  generated_text = generator.generate(
237
  text, generation_kwargs)
238
- if do_clean:
239
- generated_text = cleaner.clean_txt(generated_text)
240
  if generated_text.strip().startswith(text):
241
  generated_text = generated_text.replace(
242
  text, "", 1).strip()
@@ -267,4 +268,4 @@ def main():
267
 
268
 
269
  if __name__ == '__main__':
270
- main()
 
1
  import random
2
  import os
3
  from urllib.parse import urlencode
4
+ from pyngrok import ngrok
5
 
6
  import streamlit as st
7
  import streamlit.components.v1 as components
 
13
  HF_AUTH_TOKEN = "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"
14
  DEVICE = os.environ.get("cuda:0", "cpu") # cuda:0
15
  DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
16
+ MODEL_NAME = os.environ.get("MODEL_NAME", "NbAiLab/nb-gpt-j-6B-alpaca")
17
  MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 256))
18
+
19
  HEADER_INFO = """
20
  # CBS_Alpaca-GPT-j
21
  Norwegian GPT-J-6B NorPaca Model.
 
198
  index=int(query_params.get("do_sample", ["true"])[
199
  0].lower()[0] in ("t", "y", "1")),
200
  )
201
+ # do_clean = st.sidebar.selectbox(
202
+ # label='Clean text?',
203
+ # options=(False, True),
204
+ # help="Whether or not to remove repeated words and trim unfinished last sentences.",
205
+ # index=int(query_params.get("do_clean", ["true"])[
206
+ # 0].lower()[0] in ("t", "y", "1")),
207
+ # )
208
  generation_kwargs = {
209
  "max_length": max_length,
210
  "top_k": top_k,
211
  "top_p": top_p,
212
  "temperature": temperature,
213
  "do_sample": do_sample,
214
+ # "do_clean": do_clean,
215
  }
216
  st.markdown(HEADER_INFO)
217
  prompts = EXAMPLES + ["Custom"]
 
236
  for _ in range(5):
237
  generated_text = generator.generate(
238
  text, generation_kwargs)
239
+ # if do_clean:
240
+ # generated_text = cleaner.clean_txt(generated_text)
241
  if generated_text.strip().startswith(text):
242
  generated_text = generated_text.replace(
243
  text, "", 1).strip()
 
268
 
269
 
270
  if __name__ == '__main__':
271
+ main()