File size: 8,975 Bytes
983d072
b9e7f35
 
 
 
 
983d072
08a7509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e7f35
 
 
 
 
 
 
 
08a7509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ce81f8
 
08a7509
 
 
 
 
 
b9e7f35
08a7509
 
 
 
 
 
 
 
b9e7f35
 
08a7509
b9e7f35
 
08a7509
b9e7f35
08a7509
b9e7f35
08a7509
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import requests
import io
import random
import os
from PIL import Image

list_models = [
    "SD-1.5",
    "SDXL-1.0",
    "OpenJourney-V4",
    "Anything-V4",
    "Disney-Pixar-Cartoon",
    "Pixel-Art-XL",
    "dalle-3-xl",
]

def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
                     seed=None):

    if current_model == "SD-1.5":
        API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
    elif current_model == "SDXL-1.0":
        API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
    elif current_model == "OpenJourney-V4":
        API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
    elif current_model == "Anything-V4":
        API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0" 
    elif current_model == "Disney-Pixar-Cartoon":
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
    elif current_model == "Pixel-Art-XL":
        API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
    elif current_model == "dalle-3-xl":
        API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"   


    API_TOKEN = os.environ.get("HF_READ_TOKEN")
    headers = {"Authorization": f"Bearer {API_TOKEN}"}


    if image_style == "None style":
        payload = {
            "inputs": prompt + ", 8k",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Cinematic":
        payload = {
            "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
            "is_negative": is_negative + ", abstract, cartoon, stylized",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Digital Art":
        payload = {
            "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
            "is_negative": is_negative + ", sharp , modern , bright",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Portrait":
        payload = {
            "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }

    image_bytes = requests.post(API_URL, headers=headers, json=payload).content
    image = Image.open(io.BytesIO(image_bytes))
    return image


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .gradio-container {
            max-width: 730px !important;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
        div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
        #share-btn-container:hover {background-color: #060606}
        #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
        #share-btn * {all: unset}
        #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
        #share-btn-container .wrap {display: none !important}
        #share-btn-container.hidden {display: none!important}
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #prompt-container .form{
        border-top-right-radius: 0;
        border-bottom-right-radius: 0;
        }
        #gen-button{
        border-top-left-radius:0;
        border-bottom-left-radius:0;
        }
        #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
        #component-16{border-top-width: 1px!important;margin-top: 1em}
        .image_duplication{position: absolute; width: 100px; left: 50px}
        .tabitem{border: 0 !important}
"""

with gr.Blocks(css=css) as demo:
    
    favicon = '<img src="" width="48px" style="display: inline">'
    gr.Markdown(
        f"""<h1><center>{favicon} AI Diffusion</center></h1>
            """
    )
    
    with gr.Row(elem_id="prompt-container"):
        current_model = gr.Dropdown(label="Current Model", choices=list_models, value=list_models[1])
        
    with gr.Row(elem_id="prompt-container"):
        text_prompt = gr.Textbox(label="Prompt", placeholder="a cute cat", lines=1, elem_id="prompt-text-input")
        text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")
        
    with gr.Row():
        image_output = gr.Image(type="pil", label="Output Image", elem_id="gallery")
        
    with gr.Accordion("Advanced settings", open=False):
        negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1, elem_id="negative-prompt-text-input")
        image_style = gr.Dropdown(label="Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style", allow_custom_value=False)

    text_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)

demo.launch(show_api=False)