File size: 4,077 Bytes
5e491c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import pymeshlab as pml


def poisson_mesh_reconstruction(points, normals=None):
    # points/normals: [N, 3] np.ndarray

    import open3d as o3d

    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)

    # outlier removal
    pcd, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=10)

    # normals
    if normals is None:
        pcd.estimate_normals()
    else:
        pcd.normals = o3d.utility.Vector3dVector(normals[ind])

    # visualize
    o3d.visualization.draw_geometries([pcd], point_show_normal=False)

    mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
        pcd, depth=9
    )
    vertices_to_remove = densities < np.quantile(densities, 0.1)
    mesh.remove_vertices_by_mask(vertices_to_remove)

    # visualize
    o3d.visualization.draw_geometries([mesh])

    vertices = np.asarray(mesh.vertices)
    triangles = np.asarray(mesh.triangles)

    print(
        f"[INFO] poisson mesh reconstruction: {points.shape} --> {vertices.shape} / {triangles.shape}"
    )

    return vertices, triangles


def decimate_mesh(
    verts, faces, target, backend="pymeshlab", remesh=False, optimalplacement=True
):
    # optimalplacement: default is True, but for flat mesh must turn False to prevent spike artifect.

    _ori_vert_shape = verts.shape
    _ori_face_shape = faces.shape

    if backend == "pyfqmr":
        import pyfqmr

        solver = pyfqmr.Simplify()
        solver.setMesh(verts, faces)
        solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False)
        verts, faces, normals = solver.getMesh()
    else:
        m = pml.Mesh(verts, faces)
        ms = pml.MeshSet()
        ms.add_mesh(m, "mesh")  # will copy!

        # filters
        # ms.meshing_decimation_clustering(threshold=pml.Percentage(1))
        ms.meshing_decimation_quadric_edge_collapse(
            targetfacenum=int(target), optimalplacement=optimalplacement
        )

        if remesh:
            # ms.apply_coord_taubin_smoothing()
            ms.meshing_isotropic_explicit_remeshing(
                iterations=3, targetlen=pml.Percentage(1)
            )

        # extract mesh
        m = ms.current_mesh()
        verts = m.vertex_matrix()
        faces = m.face_matrix()

    print(
        f"[INFO] mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}"
    )

    return verts, faces


def clean_mesh(
    verts,
    faces,
    v_pct=1,
    min_f=64,
    min_d=20,
    repair=True,
    remesh=True,
    remesh_size=0.01,
):
    # verts: [N, 3]
    # faces: [N, 3]

    _ori_vert_shape = verts.shape
    _ori_face_shape = faces.shape

    m = pml.Mesh(verts, faces)
    ms = pml.MeshSet()
    ms.add_mesh(m, "mesh")  # will copy!

    # filters
    ms.meshing_remove_unreferenced_vertices()  # verts not refed by any faces

    if v_pct > 0:
        ms.meshing_merge_close_vertices(
            threshold=pml.Percentage(v_pct)
        )  # 1/10000 of bounding box diagonal

    ms.meshing_remove_duplicate_faces()  # faces defined by the same verts
    ms.meshing_remove_null_faces()  # faces with area == 0

    if min_d > 0:
        ms.meshing_remove_connected_component_by_diameter(
            mincomponentdiag=pml.Percentage(min_d)
        )

    if min_f > 0:
        ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f)

    if repair:
        # ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True)
        ms.meshing_repair_non_manifold_edges(method=0)
        ms.meshing_repair_non_manifold_vertices(vertdispratio=0)

    if remesh:
        # ms.apply_coord_taubin_smoothing()
        ms.meshing_isotropic_explicit_remeshing(
            iterations=3, targetlen=pml.AbsoluteValue(remesh_size)
        )

    # extract mesh
    m = ms.current_mesh()
    verts = m.vertex_matrix()
    faces = m.face_matrix()

    print(
        f"[INFO] mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}"
    )

    return verts, faces