Spaces:
Runtime error
Runtime error
File size: 50,014 Bytes
107cbfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
import gradio as gr
import random
import os
import json
import time
import shared
import modules.config
import fooocus_version
import modules.html
import modules.async_worker as worker
import modules.constants as constants
import modules.flags as flags
import modules.gradio_hijack as grh
import modules.style_sorter as style_sorter
import modules.meta_parser
import args_manager
import copy
import launch
from modules.sdxl_styles import legal_style_names
from modules.private_logger import get_current_html_path
from modules.ui_gradio_extensions import reload_javascript
from modules.auth import auth_enabled, check_auth
from modules.util import is_json
def get_task(*args):
args = list(args)
args.pop(0)
return worker.AsyncTask(args=args)
def generate_clicked(task: worker.AsyncTask):
import ldm_patched.modules.model_management as model_management
with model_management.interrupt_processing_mutex:
model_management.interrupt_processing = False
# outputs=[progress_html, progress_window, progress_gallery, gallery]
if len(task.args) == 0:
return
execution_start_time = time.perf_counter()
finished = False
yield gr.update(visible=True, value=modules.html.make_progress_html(1, 'Waiting for task to start ...')), \
gr.update(visible=True, value=None), \
gr.update(visible=False, value=None), \
gr.update(visible=False)
worker.async_tasks.append(task)
while not finished:
time.sleep(0.01)
if len(task.yields) > 0:
flag, product = task.yields.pop(0)
if flag == 'preview':
# help bad internet connection by skipping duplicated preview
if len(task.yields) > 0: # if we have the next item
if task.yields[0][0] == 'preview': # if the next item is also a preview
# print('Skipped one preview for better internet connection.')
continue
percentage, title, image = product
yield gr.update(visible=True, value=modules.html.make_progress_html(percentage, title)), \
gr.update(visible=True, value=image) if image is not None else gr.update(), \
gr.update(), \
gr.update(visible=False)
if flag == 'results':
yield gr.update(visible=True), \
gr.update(visible=True), \
gr.update(visible=True, value=product), \
gr.update(visible=False)
if flag == 'finish':
yield gr.update(visible=False), \
gr.update(visible=False), \
gr.update(visible=False), \
gr.update(visible=True, value=product)
finished = True
# delete Fooocus temp images, only keep gradio temp images
if args_manager.args.disable_image_log:
for filepath in product:
if isinstance(filepath, str) and os.path.exists(filepath):
os.remove(filepath)
execution_time = time.perf_counter() - execution_start_time
print(f'Total time: {execution_time:.2f} seconds')
return
reload_javascript()
title = f'Fooocus {fooocus_version.version}'
if isinstance(args_manager.args.preset, str):
title += ' ' + args_manager.args.preset
shared.gradio_root = gr.Blocks(title=title).queue()
with shared.gradio_root:
currentTask = gr.State(worker.AsyncTask(args=[]))
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
progress_window = grh.Image(label='Preview', show_label=True, visible=False, height=768,
elem_classes=['main_view'])
progress_gallery = gr.Gallery(label='Finished Images', show_label=True, object_fit='contain',
height=768, visible=False, elem_classes=['main_view', 'image_gallery'])
progress_html = gr.HTML(value=modules.html.make_progress_html(32, 'Progress 32%'), visible=False,
elem_id='progress-bar', elem_classes='progress-bar')
gallery = gr.Gallery(label='Gallery', show_label=False, object_fit='contain', visible=True, height=768,
elem_classes=['resizable_area', 'main_view', 'final_gallery', 'image_gallery'],
elem_id='final_gallery')
with gr.Row(elem_classes='type_row'):
with gr.Column(scale=17):
prompt = gr.Textbox(show_label=False, placeholder="Type prompt here or paste parameters.", elem_id='positive_prompt',
container=False, autofocus=True, elem_classes='type_row', lines=1024)
default_prompt = modules.config.default_prompt
if isinstance(default_prompt, str) and default_prompt != '':
shared.gradio_root.load(lambda: default_prompt, outputs=prompt)
with gr.Column(scale=3, min_width=0):
generate_button = gr.Button(label="Generate", value="Generate", elem_classes='type_row', elem_id='generate_button', visible=True)
load_parameter_button = gr.Button(label="Load Parameters", value="Load Parameters", elem_classes='type_row', elem_id='load_parameter_button', visible=False)
skip_button = gr.Button(label="Skip", value="Skip", elem_classes='type_row_half', visible=False)
stop_button = gr.Button(label="Stop", value="Stop", elem_classes='type_row_half', elem_id='stop_button', visible=False)
def stop_clicked(currentTask):
import ldm_patched.modules.model_management as model_management
currentTask.last_stop = 'stop'
if (currentTask.processing):
model_management.interrupt_current_processing()
return currentTask
def skip_clicked(currentTask):
import ldm_patched.modules.model_management as model_management
currentTask.last_stop = 'skip'
if (currentTask.processing):
model_management.interrupt_current_processing()
return currentTask
stop_button.click(stop_clicked, inputs=currentTask, outputs=currentTask, queue=False, show_progress=False, _js='cancelGenerateForever')
skip_button.click(skip_clicked, inputs=currentTask, outputs=currentTask, queue=False, show_progress=False)
with gr.Row(elem_classes='advanced_check_row'):
input_image_checkbox = gr.Checkbox(label='Input Image', value=False, container=False, elem_classes='min_check')
advanced_checkbox = gr.Checkbox(label='Advanced', value=modules.config.default_advanced_checkbox, container=False, elem_classes='min_check')
with gr.Row(visible=False) as image_input_panel:
with gr.Tabs():
with gr.TabItem(label='Upscale or Variation') as uov_tab:
with gr.Row():
with gr.Column():
uov_input_image = grh.Image(label='Drag above image to here', source='upload', type='numpy')
with gr.Column():
uov_method = gr.Radio(label='Upscale or Variation:', choices=flags.uov_list, value=flags.disabled)
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/390" target="_blank">\U0001F4D4 Document</a>')
with gr.TabItem(label='Image Prompt') as ip_tab:
with gr.Row():
ip_images = []
ip_types = []
ip_stops = []
ip_weights = []
ip_ctrls = []
ip_ad_cols = []
for _ in range(flags.controlnet_image_count):
with gr.Column():
ip_image = grh.Image(label='Image', source='upload', type='numpy', show_label=False, height=300)
ip_images.append(ip_image)
ip_ctrls.append(ip_image)
with gr.Column(visible=False) as ad_col:
with gr.Row():
default_end, default_weight = flags.default_parameters[flags.default_ip]
ip_stop = gr.Slider(label='Stop At', minimum=0.0, maximum=1.0, step=0.001, value=default_end)
ip_stops.append(ip_stop)
ip_ctrls.append(ip_stop)
ip_weight = gr.Slider(label='Weight', minimum=0.0, maximum=2.0, step=0.001, value=default_weight)
ip_weights.append(ip_weight)
ip_ctrls.append(ip_weight)
ip_type = gr.Radio(label='Type', choices=flags.ip_list, value=flags.default_ip, container=False)
ip_types.append(ip_type)
ip_ctrls.append(ip_type)
ip_type.change(lambda x: flags.default_parameters[x], inputs=[ip_type], outputs=[ip_stop, ip_weight], queue=False, show_progress=False)
ip_ad_cols.append(ad_col)
ip_advanced = gr.Checkbox(label='Advanced', value=False, container=False)
gr.HTML('* \"Image Prompt\" is powered by Fooocus Image Mixture Engine (v1.0.1). <a href="https://github.com/lllyasviel/Fooocus/discussions/557" target="_blank">\U0001F4D4 Document</a>')
def ip_advance_checked(x):
return [gr.update(visible=x)] * len(ip_ad_cols) + \
[flags.default_ip] * len(ip_types) + \
[flags.default_parameters[flags.default_ip][0]] * len(ip_stops) + \
[flags.default_parameters[flags.default_ip][1]] * len(ip_weights)
ip_advanced.change(ip_advance_checked, inputs=ip_advanced,
outputs=ip_ad_cols + ip_types + ip_stops + ip_weights,
queue=False, show_progress=False)
with gr.TabItem(label='Inpaint or Outpaint') as inpaint_tab:
with gr.Row():
inpaint_input_image = grh.Image(label='Drag inpaint or outpaint image to here', source='upload', type='numpy', tool='sketch', height=500, brush_color="#FFFFFF", elem_id='inpaint_canvas')
inpaint_mask_image = grh.Image(label='Mask Upload', source='upload', type='numpy', height=500, visible=False)
with gr.Row():
inpaint_additional_prompt = gr.Textbox(placeholder="Describe what you want to inpaint.", elem_id='inpaint_additional_prompt', label='Inpaint Additional Prompt', visible=False)
outpaint_selections = gr.CheckboxGroup(choices=['Left', 'Right', 'Top', 'Bottom'], value=[], label='Outpaint Direction')
inpaint_mode = gr.Dropdown(choices=modules.flags.inpaint_options, value=modules.flags.inpaint_option_default, label='Method')
example_inpaint_prompts = gr.Dataset(samples=modules.config.example_inpaint_prompts, label='Additional Prompt Quick List', components=[inpaint_additional_prompt], visible=False)
gr.HTML('* Powered by Fooocus Inpaint Engine <a href="https://github.com/lllyasviel/Fooocus/discussions/414" target="_blank">\U0001F4D4 Document</a>')
example_inpaint_prompts.click(lambda x: x[0], inputs=example_inpaint_prompts, outputs=inpaint_additional_prompt, show_progress=False, queue=False)
with gr.TabItem(label='Describe') as desc_tab:
with gr.Row():
with gr.Column():
desc_input_image = grh.Image(label='Drag any image to here', source='upload', type='numpy')
with gr.Column():
desc_method = gr.Radio(
label='Content Type',
choices=[flags.desc_type_photo, flags.desc_type_anime],
value=flags.desc_type_photo)
desc_btn = gr.Button(value='Describe this Image into Prompt')
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/1363" target="_blank">\U0001F4D4 Document</a>')
with gr.TabItem(label='Metadata') as load_tab:
with gr.Column():
metadata_input_image = grh.Image(label='Drag any image generated by Fooocus here', source='upload', type='filepath')
metadata_json = gr.JSON(label='Metadata')
metadata_import_button = gr.Button(value='Apply Metadata')
def trigger_metadata_preview(filepath):
parameters, metadata_scheme = modules.meta_parser.read_info_from_image(filepath)
results = {}
if parameters is not None:
results['parameters'] = parameters
if isinstance(metadata_scheme, flags.MetadataScheme):
results['metadata_scheme'] = metadata_scheme.value
return results
metadata_input_image.upload(trigger_metadata_preview, inputs=metadata_input_image,
outputs=metadata_json, queue=False, show_progress=True)
switch_js = "(x) => {if(x){viewer_to_bottom(100);viewer_to_bottom(500);}else{viewer_to_top();} return x;}"
down_js = "() => {viewer_to_bottom();}"
input_image_checkbox.change(lambda x: gr.update(visible=x), inputs=input_image_checkbox,
outputs=image_input_panel, queue=False, show_progress=False, _js=switch_js)
ip_advanced.change(lambda: None, queue=False, show_progress=False, _js=down_js)
current_tab = gr.Textbox(value='uov', visible=False)
uov_tab.select(lambda: 'uov', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
inpaint_tab.select(lambda: 'inpaint', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
ip_tab.select(lambda: 'ip', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
desc_tab.select(lambda: 'desc', outputs=current_tab, queue=False, _js=down_js, show_progress=False)
with gr.Column(scale=1, visible=modules.config.default_advanced_checkbox) as advanced_column:
with gr.Tab(label='Setting'):
if not args_manager.args.disable_preset_selection:
preset_selection = gr.Radio(label='Preset',
choices=modules.config.available_presets,
value=args_manager.args.preset if args_manager.args.preset else "initial",
interactive=True)
performance_selection = gr.Radio(label='Performance',
choices=flags.Performance.list(),
value=modules.config.default_performance)
aspect_ratios_selection = gr.Radio(label='Aspect Ratios', choices=modules.config.available_aspect_ratios,
value=modules.config.default_aspect_ratio, info='width × height',
elem_classes='aspect_ratios')
image_number = gr.Slider(label='Image Number', minimum=1, maximum=modules.config.default_max_image_number, step=1, value=modules.config.default_image_number)
output_format = gr.Radio(label='Output Format',
choices=flags.OutputFormat.list(),
value=modules.config.default_output_format)
negative_prompt = gr.Textbox(label='Negative Prompt', show_label=True, placeholder="Type prompt here.",
info='Describing what you do not want to see.', lines=2,
elem_id='negative_prompt',
value=modules.config.default_prompt_negative)
seed_random = gr.Checkbox(label='Random', value=True)
image_seed = gr.Textbox(label='Seed', value=0, max_lines=1, visible=False) # workaround for https://github.com/gradio-app/gradio/issues/5354
def random_checked(r):
return gr.update(visible=not r)
def refresh_seed(r, seed_string):
if r:
return random.randint(constants.MIN_SEED, constants.MAX_SEED)
else:
try:
seed_value = int(seed_string)
if constants.MIN_SEED <= seed_value <= constants.MAX_SEED:
return seed_value
except ValueError:
pass
return random.randint(constants.MIN_SEED, constants.MAX_SEED)
seed_random.change(random_checked, inputs=[seed_random], outputs=[image_seed],
queue=False, show_progress=False)
def update_history_link():
if args_manager.args.disable_image_log:
return gr.update(value='')
return gr.update(value=f'<a href="file={get_current_html_path(output_format)}" target="_blank">\U0001F4DA History Log</a>')
history_link = gr.HTML()
shared.gradio_root.load(update_history_link, outputs=history_link, queue=False, show_progress=False)
with gr.Tab(label='Style', elem_classes=['style_selections_tab']):
style_sorter.try_load_sorted_styles(
style_names=legal_style_names,
default_selected=modules.config.default_styles)
style_search_bar = gr.Textbox(show_label=False, container=False,
placeholder="\U0001F50E Type here to search styles ...",
value="",
label='Search Styles')
style_selections = gr.CheckboxGroup(show_label=False, container=False,
choices=copy.deepcopy(style_sorter.all_styles),
value=copy.deepcopy(modules.config.default_styles),
label='Selected Styles',
elem_classes=['style_selections'])
gradio_receiver_style_selections = gr.Textbox(elem_id='gradio_receiver_style_selections', visible=False)
shared.gradio_root.load(lambda: gr.update(choices=copy.deepcopy(style_sorter.all_styles)),
outputs=style_selections)
style_search_bar.change(style_sorter.search_styles,
inputs=[style_selections, style_search_bar],
outputs=style_selections,
queue=False,
show_progress=False).then(
lambda: None, _js='()=>{refresh_style_localization();}')
gradio_receiver_style_selections.input(style_sorter.sort_styles,
inputs=style_selections,
outputs=style_selections,
queue=False,
show_progress=False).then(
lambda: None, _js='()=>{refresh_style_localization();}')
with gr.Tab(label='Model'):
with gr.Group():
with gr.Row():
base_model = gr.Dropdown(label='Base Model (SDXL only)', choices=modules.config.model_filenames, value=modules.config.default_base_model_name, show_label=True)
refiner_model = gr.Dropdown(label='Refiner (SDXL or SD 1.5)', choices=['None'] + modules.config.model_filenames, value=modules.config.default_refiner_model_name, show_label=True)
refiner_switch = gr.Slider(label='Refiner Switch At', minimum=0.1, maximum=1.0, step=0.0001,
info='Use 0.4 for SD1.5 realistic models; '
'or 0.667 for SD1.5 anime models; '
'or 0.8 for XL-refiners; '
'or any value for switching two SDXL models.',
value=modules.config.default_refiner_switch,
visible=modules.config.default_refiner_model_name != 'None')
refiner_model.change(lambda x: gr.update(visible=x != 'None'),
inputs=refiner_model, outputs=refiner_switch, show_progress=False, queue=False)
with gr.Group():
lora_ctrls = []
for i, (enabled, filename, weight) in enumerate(modules.config.default_loras):
with gr.Row():
lora_enabled = gr.Checkbox(label='Enable', value=enabled,
elem_classes=['lora_enable', 'min_check'], scale=1)
lora_model = gr.Dropdown(label=f'LoRA {i + 1}',
choices=['None'] + modules.config.lora_filenames, value=filename,
elem_classes='lora_model', scale=5)
lora_weight = gr.Slider(label='Weight', minimum=modules.config.default_loras_min_weight,
maximum=modules.config.default_loras_max_weight, step=0.01, value=weight,
elem_classes='lora_weight', scale=5)
lora_ctrls += [lora_enabled, lora_model, lora_weight]
with gr.Row():
refresh_files = gr.Button(label='Refresh', value='\U0001f504 Refresh All Files', variant='secondary', elem_classes='refresh_button')
with gr.Tab(label='Advanced'):
guidance_scale = gr.Slider(label='Guidance Scale', minimum=1.0, maximum=30.0, step=0.01,
value=modules.config.default_cfg_scale,
info='Higher value means style is cleaner, vivider, and more artistic.')
sharpness = gr.Slider(label='Image Sharpness', minimum=0.0, maximum=30.0, step=0.001,
value=modules.config.default_sample_sharpness,
info='Higher value means image and texture are sharper.')
gr.HTML('<a href="https://github.com/lllyasviel/Fooocus/discussions/117" target="_blank">\U0001F4D4 Document</a>')
dev_mode = gr.Checkbox(label='Developer Debug Mode', value=False, container=False)
with gr.Column(visible=False) as dev_tools:
with gr.Tab(label='Debug Tools'):
adm_scaler_positive = gr.Slider(label='Positive ADM Guidance Scaler', minimum=0.1, maximum=3.0,
step=0.001, value=1.5, info='The scaler multiplied to positive ADM (use 1.0 to disable). ')
adm_scaler_negative = gr.Slider(label='Negative ADM Guidance Scaler', minimum=0.1, maximum=3.0,
step=0.001, value=0.8, info='The scaler multiplied to negative ADM (use 1.0 to disable). ')
adm_scaler_end = gr.Slider(label='ADM Guidance End At Step', minimum=0.0, maximum=1.0,
step=0.001, value=0.3,
info='When to end the guidance from positive/negative ADM. ')
refiner_swap_method = gr.Dropdown(label='Refiner swap method', value=flags.refiner_swap_method,
choices=['joint', 'separate', 'vae'])
adaptive_cfg = gr.Slider(label='CFG Mimicking from TSNR', minimum=1.0, maximum=30.0, step=0.01,
value=modules.config.default_cfg_tsnr,
info='Enabling Fooocus\'s implementation of CFG mimicking for TSNR '
'(effective when real CFG > mimicked CFG).')
sampler_name = gr.Dropdown(label='Sampler', choices=flags.sampler_list,
value=modules.config.default_sampler)
scheduler_name = gr.Dropdown(label='Scheduler', choices=flags.scheduler_list,
value=modules.config.default_scheduler)
generate_image_grid = gr.Checkbox(label='Generate Image Grid for Each Batch',
info='(Experimental) This may cause performance problems on some computers and certain internet conditions.',
value=False)
overwrite_step = gr.Slider(label='Forced Overwrite of Sampling Step',
minimum=-1, maximum=200, step=1,
value=modules.config.default_overwrite_step,
info='Set as -1 to disable. For developer debugging.')
overwrite_switch = gr.Slider(label='Forced Overwrite of Refiner Switch Step',
minimum=-1, maximum=200, step=1,
value=modules.config.default_overwrite_switch,
info='Set as -1 to disable. For developer debugging.')
overwrite_width = gr.Slider(label='Forced Overwrite of Generating Width',
minimum=-1, maximum=2048, step=1, value=-1,
info='Set as -1 to disable. For developer debugging. '
'Results will be worse for non-standard numbers that SDXL is not trained on.')
overwrite_height = gr.Slider(label='Forced Overwrite of Generating Height',
minimum=-1, maximum=2048, step=1, value=-1,
info='Set as -1 to disable. For developer debugging. '
'Results will be worse for non-standard numbers that SDXL is not trained on.')
overwrite_vary_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Vary"',
minimum=-1, maximum=1.0, step=0.001, value=-1,
info='Set as negative number to disable. For developer debugging.')
overwrite_upscale_strength = gr.Slider(label='Forced Overwrite of Denoising Strength of "Upscale"',
minimum=-1, maximum=1.0, step=0.001, value=-1,
info='Set as negative number to disable. For developer debugging.')
disable_preview = gr.Checkbox(label='Disable Preview', value=False,
info='Disable preview during generation.')
disable_intermediate_results = gr.Checkbox(label='Disable Intermediate Results',
value=modules.config.default_performance == flags.Performance.EXTREME_SPEED.value,
interactive=modules.config.default_performance != flags.Performance.EXTREME_SPEED.value,
info='Disable intermediate results during generation, only show final gallery.')
disable_seed_increment = gr.Checkbox(label='Disable seed increment',
info='Disable automatic seed increment when image number is > 1.',
value=False)
read_wildcards_in_order = gr.Checkbox(label="Read wildcards in order", value=False)
if not args_manager.args.disable_metadata:
save_metadata_to_images = gr.Checkbox(label='Save Metadata to Images', value=modules.config.default_save_metadata_to_images,
info='Adds parameters to generated images allowing manual regeneration.')
metadata_scheme = gr.Radio(label='Metadata Scheme', choices=flags.metadata_scheme, value=modules.config.default_metadata_scheme,
info='Image Prompt parameters are not included. Use png and a1111 for compatibility with Civitai.',
visible=modules.config.default_save_metadata_to_images)
save_metadata_to_images.change(lambda x: gr.update(visible=x), inputs=[save_metadata_to_images], outputs=[metadata_scheme],
queue=False, show_progress=False)
with gr.Tab(label='Control'):
debugging_cn_preprocessor = gr.Checkbox(label='Debug Preprocessors', value=False,
info='See the results from preprocessors.')
skipping_cn_preprocessor = gr.Checkbox(label='Skip Preprocessors', value=False,
info='Do not preprocess images. (Inputs are already canny/depth/cropped-face/etc.)')
mixing_image_prompt_and_vary_upscale = gr.Checkbox(label='Mixing Image Prompt and Vary/Upscale',
value=False)
mixing_image_prompt_and_inpaint = gr.Checkbox(label='Mixing Image Prompt and Inpaint',
value=False)
controlnet_softness = gr.Slider(label='Softness of ControlNet', minimum=0.0, maximum=1.0,
step=0.001, value=0.25,
info='Similar to the Control Mode in A1111 (use 0.0 to disable). ')
with gr.Tab(label='Canny'):
canny_low_threshold = gr.Slider(label='Canny Low Threshold', minimum=1, maximum=255,
step=1, value=64)
canny_high_threshold = gr.Slider(label='Canny High Threshold', minimum=1, maximum=255,
step=1, value=128)
with gr.Tab(label='Inpaint'):
debugging_inpaint_preprocessor = gr.Checkbox(label='Debug Inpaint Preprocessing', value=False)
inpaint_disable_initial_latent = gr.Checkbox(label='Disable initial latent in inpaint', value=False)
inpaint_engine = gr.Dropdown(label='Inpaint Engine',
value=modules.config.default_inpaint_engine_version,
choices=flags.inpaint_engine_versions,
info='Version of Fooocus inpaint model')
inpaint_strength = gr.Slider(label='Inpaint Denoising Strength',
minimum=0.0, maximum=1.0, step=0.001, value=1.0,
info='Same as the denoising strength in A1111 inpaint. '
'Only used in inpaint, not used in outpaint. '
'(Outpaint always use 1.0)')
inpaint_respective_field = gr.Slider(label='Inpaint Respective Field',
minimum=0.0, maximum=1.0, step=0.001, value=0.618,
info='The area to inpaint. '
'Value 0 is same as "Only Masked" in A1111. '
'Value 1 is same as "Whole Image" in A1111. '
'Only used in inpaint, not used in outpaint. '
'(Outpaint always use 1.0)')
inpaint_erode_or_dilate = gr.Slider(label='Mask Erode or Dilate',
minimum=-64, maximum=64, step=1, value=0,
info='Positive value will make white area in the mask larger, '
'negative value will make white area smaller.'
'(default is 0, always process before any mask invert)')
inpaint_mask_upload_checkbox = gr.Checkbox(label='Enable Mask Upload', value=False)
invert_mask_checkbox = gr.Checkbox(label='Invert Mask', value=False)
inpaint_ctrls = [debugging_inpaint_preprocessor, inpaint_disable_initial_latent, inpaint_engine,
inpaint_strength, inpaint_respective_field,
inpaint_mask_upload_checkbox, invert_mask_checkbox, inpaint_erode_or_dilate]
inpaint_mask_upload_checkbox.change(lambda x: gr.update(visible=x),
inputs=inpaint_mask_upload_checkbox,
outputs=inpaint_mask_image, queue=False, show_progress=False)
with gr.Tab(label='FreeU'):
freeu_enabled = gr.Checkbox(label='Enabled', value=False)
freeu_b1 = gr.Slider(label='B1', minimum=0, maximum=2, step=0.01, value=1.01)
freeu_b2 = gr.Slider(label='B2', minimum=0, maximum=2, step=0.01, value=1.02)
freeu_s1 = gr.Slider(label='S1', minimum=0, maximum=4, step=0.01, value=0.99)
freeu_s2 = gr.Slider(label='S2', minimum=0, maximum=4, step=0.01, value=0.95)
freeu_ctrls = [freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2]
def dev_mode_checked(r):
return gr.update(visible=r)
dev_mode.change(dev_mode_checked, inputs=[dev_mode], outputs=[dev_tools],
queue=False, show_progress=False)
def refresh_files_clicked():
modules.config.update_files()
results = [gr.update(choices=modules.config.model_filenames)]
results += [gr.update(choices=['None'] + modules.config.model_filenames)]
if not args_manager.args.disable_preset_selection:
results += [gr.update(choices=modules.config.available_presets)]
for i in range(modules.config.default_max_lora_number):
results += [gr.update(interactive=True),
gr.update(choices=['None'] + modules.config.lora_filenames), gr.update()]
return results
refresh_files_output = [base_model, refiner_model]
if not args_manager.args.disable_preset_selection:
refresh_files_output += [preset_selection]
refresh_files.click(refresh_files_clicked, [], refresh_files_output + lora_ctrls,
queue=False, show_progress=False)
state_is_generating = gr.State(False)
load_data_outputs = [advanced_checkbox, image_number, prompt, negative_prompt, style_selections,
performance_selection, overwrite_step, overwrite_switch, aspect_ratios_selection,
overwrite_width, overwrite_height, guidance_scale, sharpness, adm_scaler_positive,
adm_scaler_negative, adm_scaler_end, refiner_swap_method, adaptive_cfg, base_model,
refiner_model, refiner_switch, sampler_name, scheduler_name, seed_random, image_seed,
generate_button, load_parameter_button] + freeu_ctrls + lora_ctrls
if not args_manager.args.disable_preset_selection:
def preset_selection_change(preset, is_generating):
preset_content = modules.config.try_get_preset_content(preset) if preset != 'initial' else {}
preset_prepared = modules.meta_parser.parse_meta_from_preset(preset_content)
default_model = preset_prepared.get('base_model')
previous_default_models = preset_prepared.get('previous_default_models', [])
checkpoint_downloads = preset_prepared.get('checkpoint_downloads', {})
embeddings_downloads = preset_prepared.get('embeddings_downloads', {})
lora_downloads = preset_prepared.get('lora_downloads', {})
preset_prepared['base_model'], preset_prepared['lora_downloads'] = launch.download_models(
default_model, previous_default_models, checkpoint_downloads, embeddings_downloads, lora_downloads)
if 'prompt' in preset_prepared and preset_prepared.get('prompt') == '':
del preset_prepared['prompt']
return modules.meta_parser.load_parameter_button_click(json.dumps(preset_prepared), is_generating)
preset_selection.change(preset_selection_change, inputs=[preset_selection, state_is_generating], outputs=load_data_outputs, queue=False, show_progress=True) \
.then(fn=style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False) \
performance_selection.change(lambda x: [gr.update(interactive=not flags.Performance.has_restricted_features(x))] * 11 +
[gr.update(visible=not flags.Performance.has_restricted_features(x))] * 1 +
[gr.update(interactive=not flags.Performance.has_restricted_features(x), value=flags.Performance.has_restricted_features(x))] * 1,
inputs=performance_selection,
outputs=[
guidance_scale, sharpness, adm_scaler_end, adm_scaler_positive,
adm_scaler_negative, refiner_switch, refiner_model, sampler_name,
scheduler_name, adaptive_cfg, refiner_swap_method, negative_prompt, disable_intermediate_results
], queue=False, show_progress=False)
output_format.input(lambda x: gr.update(output_format=x), inputs=output_format)
advanced_checkbox.change(lambda x: gr.update(visible=x), advanced_checkbox, advanced_column,
queue=False, show_progress=False) \
.then(fn=lambda: None, _js='refresh_grid_delayed', queue=False, show_progress=False)
def inpaint_mode_change(mode):
assert mode in modules.flags.inpaint_options
# inpaint_additional_prompt, outpaint_selections, example_inpaint_prompts,
# inpaint_disable_initial_latent, inpaint_engine,
# inpaint_strength, inpaint_respective_field
if mode == modules.flags.inpaint_option_detail:
return [
gr.update(visible=True), gr.update(visible=False, value=[]),
gr.Dataset.update(visible=True, samples=modules.config.example_inpaint_prompts),
False, 'None', 0.5, 0.0
]
if mode == modules.flags.inpaint_option_modify:
return [
gr.update(visible=True), gr.update(visible=False, value=[]),
gr.Dataset.update(visible=False, samples=modules.config.example_inpaint_prompts),
True, modules.config.default_inpaint_engine_version, 1.0, 0.0
]
return [
gr.update(visible=False, value=''), gr.update(visible=True),
gr.Dataset.update(visible=False, samples=modules.config.example_inpaint_prompts),
False, modules.config.default_inpaint_engine_version, 1.0, 0.618
]
inpaint_mode.input(inpaint_mode_change, inputs=inpaint_mode, outputs=[
inpaint_additional_prompt, outpaint_selections, example_inpaint_prompts,
inpaint_disable_initial_latent, inpaint_engine,
inpaint_strength, inpaint_respective_field
], show_progress=False, queue=False)
ctrls = [currentTask, generate_image_grid]
ctrls += [
prompt, negative_prompt, style_selections,
performance_selection, aspect_ratios_selection, image_number, output_format, image_seed,
read_wildcards_in_order, sharpness, guidance_scale
]
ctrls += [base_model, refiner_model, refiner_switch] + lora_ctrls
ctrls += [input_image_checkbox, current_tab]
ctrls += [uov_method, uov_input_image]
ctrls += [outpaint_selections, inpaint_input_image, inpaint_additional_prompt, inpaint_mask_image]
ctrls += [disable_preview, disable_intermediate_results, disable_seed_increment]
ctrls += [adm_scaler_positive, adm_scaler_negative, adm_scaler_end, adaptive_cfg]
ctrls += [sampler_name, scheduler_name]
ctrls += [overwrite_step, overwrite_switch, overwrite_width, overwrite_height, overwrite_vary_strength]
ctrls += [overwrite_upscale_strength, mixing_image_prompt_and_vary_upscale, mixing_image_prompt_and_inpaint]
ctrls += [debugging_cn_preprocessor, skipping_cn_preprocessor, canny_low_threshold, canny_high_threshold]
ctrls += [refiner_swap_method, controlnet_softness]
ctrls += freeu_ctrls
ctrls += inpaint_ctrls
if not args_manager.args.disable_metadata:
ctrls += [save_metadata_to_images, metadata_scheme]
ctrls += ip_ctrls
def parse_meta(raw_prompt_txt, is_generating):
loaded_json = None
if is_json(raw_prompt_txt):
loaded_json = json.loads(raw_prompt_txt)
if loaded_json is None:
if is_generating:
return gr.update(), gr.update(), gr.update()
else:
return gr.update(), gr.update(visible=True), gr.update(visible=False)
return json.dumps(loaded_json), gr.update(visible=False), gr.update(visible=True)
prompt.input(parse_meta, inputs=[prompt, state_is_generating], outputs=[prompt, generate_button, load_parameter_button], queue=False, show_progress=False)
load_parameter_button.click(modules.meta_parser.load_parameter_button_click, inputs=[prompt, state_is_generating], outputs=load_data_outputs, queue=False, show_progress=False)
def trigger_metadata_import(filepath, state_is_generating):
parameters, metadata_scheme = modules.meta_parser.read_info_from_image(filepath)
if parameters is None:
print('Could not find metadata in the image!')
parsed_parameters = {}
else:
metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme)
parsed_parameters = metadata_parser.parse_json(parameters)
return modules.meta_parser.load_parameter_button_click(parsed_parameters, state_is_generating)
metadata_import_button.click(trigger_metadata_import, inputs=[metadata_input_image, state_is_generating], outputs=load_data_outputs, queue=False, show_progress=True) \
.then(style_sorter.sort_styles, inputs=style_selections, outputs=style_selections, queue=False, show_progress=False)
generate_button.click(lambda: (gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=False, interactive=False), [], True),
outputs=[stop_button, skip_button, generate_button, gallery, state_is_generating]) \
.then(fn=refresh_seed, inputs=[seed_random, image_seed], outputs=image_seed) \
.then(fn=get_task, inputs=ctrls, outputs=currentTask) \
.then(fn=generate_clicked, inputs=currentTask, outputs=[progress_html, progress_window, progress_gallery, gallery]) \
.then(lambda: (gr.update(visible=True, interactive=True), gr.update(visible=False, interactive=False), gr.update(visible=False, interactive=False), False),
outputs=[generate_button, stop_button, skip_button, state_is_generating]) \
.then(fn=update_history_link, outputs=history_link) \
.then(fn=lambda: None, _js='playNotification').then(fn=lambda: None, _js='refresh_grid_delayed')
for notification_file in ['notification.ogg', 'notification.mp3']:
if os.path.exists(notification_file):
gr.Audio(interactive=False, value=notification_file, elem_id='audio_notification', visible=False)
break
def trigger_describe(mode, img):
if mode == flags.desc_type_photo:
from extras.interrogate import default_interrogator as default_interrogator_photo
return default_interrogator_photo(img), ["Fooocus V2", "Fooocus Enhance", "Fooocus Sharp"]
if mode == flags.desc_type_anime:
from extras.wd14tagger import default_interrogator as default_interrogator_anime
return default_interrogator_anime(img), ["Fooocus V2", "Fooocus Masterpiece"]
return mode, ["Fooocus V2"]
desc_btn.click(trigger_describe, inputs=[desc_method, desc_input_image],
outputs=[prompt, style_selections], show_progress=True, queue=True)
def dump_default_english_config():
from modules.localization import dump_english_config
dump_english_config(grh.all_components)
# dump_default_english_config()
shared.gradio_root.launch(
inbrowser=args_manager.args.in_browser,
server_name=args_manager.args.listen,
server_port=args_manager.args.port,
share=args_manager.args.share,
auth=check_auth if (args_manager.args.share or args_manager.args.listen) and auth_enabled else None,
allowed_paths=[modules.config.path_outputs],
blocked_paths=[constants.AUTH_FILENAME]
)
|