Mathdesenvnonimate commited on
Commit
c9db1a8
·
verified ·
1 Parent(s): bd3be1f

Upload 53 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. css/style.css +396 -0
  2. extras/BLIP/configs/bert_config.json +21 -0
  3. extras/BLIP/configs/caption_coco.yaml +33 -0
  4. extras/BLIP/configs/med_config.json +21 -0
  5. extras/BLIP/configs/nlvr.yaml +21 -0
  6. extras/BLIP/configs/nocaps.yaml +15 -0
  7. extras/BLIP/configs/pretrain.yaml +27 -0
  8. extras/BLIP/configs/retrieval_coco.yaml +34 -0
  9. extras/BLIP/configs/retrieval_flickr.yaml +34 -0
  10. extras/BLIP/configs/retrieval_msrvtt.yaml +12 -0
  11. extras/BLIP/configs/vqa.yaml +25 -0
  12. extras/BLIP/models/bert_tokenizer/config.json +23 -0
  13. extras/BLIP/models/bert_tokenizer/tokenizer.json +0 -0
  14. extras/BLIP/models/bert_tokenizer/tokenizer_config.json +3 -0
  15. extras/BLIP/models/bert_tokenizer/vocab.txt +0 -0
  16. extras/BLIP/models/blip.py +239 -0
  17. extras/BLIP/models/blip_itm.py +76 -0
  18. extras/BLIP/models/blip_nlvr.py +105 -0
  19. extras/BLIP/models/blip_pretrain.py +339 -0
  20. extras/BLIP/models/blip_retrieval.py +319 -0
  21. extras/BLIP/models/blip_vqa.py +186 -0
  22. extras/BLIP/models/med.py +955 -0
  23. extras/BLIP/models/nlvr_encoder.py +843 -0
  24. extras/BLIP/models/vit.py +308 -0
  25. extras/expansion.py +129 -0
  26. extras/face_crop.py +50 -0
  27. extras/facexlib/detection/__init__.py +31 -0
  28. extras/facexlib/detection/align_trans.py +219 -0
  29. extras/facexlib/detection/matlab_cp2tform.py +317 -0
  30. extras/facexlib/detection/retinaface.py +366 -0
  31. extras/facexlib/detection/retinaface_net.py +196 -0
  32. extras/facexlib/detection/retinaface_utils.py +421 -0
  33. extras/facexlib/parsing/__init__.py +24 -0
  34. extras/facexlib/parsing/bisenet.py +140 -0
  35. extras/facexlib/parsing/parsenet.py +194 -0
  36. extras/facexlib/parsing/resnet.py +69 -0
  37. extras/facexlib/utils/__init__.py +7 -0
  38. extras/facexlib/utils/face_restoration_helper.py +374 -0
  39. extras/facexlib/utils/face_utils.py +250 -0
  40. extras/facexlib/utils/misc.py +118 -0
  41. extras/interrogate.py +63 -0
  42. extras/ip_adapter.py +284 -0
  43. extras/preprocessors.py +81 -0
  44. extras/resampler.py +120 -0
  45. extras/vae_interpose.py +93 -0
  46. extras/wd14tagger.py +98 -0
  47. javascript/contextMenus.js +166 -0
  48. javascript/edit-attention.js +128 -0
  49. javascript/imageviewer.js +260 -0
  50. javascript/localization.js +144 -0
css/style.css ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* based on https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/v1.6.0/style.css */
2
+
3
+ .loader-container {
4
+ display: flex; /* Use flex to align items horizontally */
5
+ align-items: center; /* Center items vertically within the container */
6
+ white-space: nowrap; /* Prevent line breaks within the container */
7
+ }
8
+
9
+ .loader {
10
+ border: 8px solid #f3f3f3; /* Light grey */
11
+ border-top: 8px solid #3498db; /* Blue */
12
+ border-radius: 50%;
13
+ width: 30px;
14
+ height: 30px;
15
+ animation: spin 2s linear infinite;
16
+ }
17
+
18
+ @keyframes spin {
19
+ 0% { transform: rotate(0deg); }
20
+ 100% { transform: rotate(360deg); }
21
+ }
22
+
23
+ /* Style the progress bar */
24
+ progress {
25
+ appearance: none; /* Remove default styling */
26
+ height: 20px; /* Set the height of the progress bar */
27
+ border-radius: 5px; /* Round the corners of the progress bar */
28
+ background-color: #f3f3f3; /* Light grey background */
29
+ width: 100%;
30
+ }
31
+
32
+ /* Style the progress bar container */
33
+ .progress-container {
34
+ margin-left: 20px;
35
+ margin-right: 20px;
36
+ flex-grow: 1; /* Allow the progress container to take up remaining space */
37
+ }
38
+
39
+ /* Set the color of the progress bar fill */
40
+ progress::-webkit-progress-value {
41
+ background-color: #3498db; /* Blue color for the fill */
42
+ }
43
+
44
+ progress::-moz-progress-bar {
45
+ background-color: #3498db; /* Blue color for the fill in Firefox */
46
+ }
47
+
48
+ /* Style the text on the progress bar */
49
+ progress::after {
50
+ content: attr(value '%'); /* Display the progress value followed by '%' */
51
+ position: absolute;
52
+ top: 50%;
53
+ left: 50%;
54
+ transform: translate(-50%, -50%);
55
+ color: white; /* Set text color */
56
+ font-size: 14px; /* Set font size */
57
+ }
58
+
59
+ /* Style other texts */
60
+ .loader-container > span {
61
+ margin-left: 5px; /* Add spacing between the progress bar and the text */
62
+ }
63
+
64
+ .progress-bar > .generating {
65
+ display: none !important;
66
+ }
67
+
68
+ .progress-bar{
69
+ height: 30px !important;
70
+ }
71
+
72
+ .type_row{
73
+ height: 80px !important;
74
+ }
75
+
76
+ .type_row_half{
77
+ height: 32px !important;
78
+ }
79
+
80
+ .scroll-hide{
81
+ resize: none !important;
82
+ }
83
+
84
+ .refresh_button{
85
+ border: none !important;
86
+ background: none !important;
87
+ font-size: none !important;
88
+ box-shadow: none !important;
89
+ }
90
+
91
+ .advanced_check_row{
92
+ width: 250px !important;
93
+ }
94
+
95
+ .min_check{
96
+ min-width: min(1px, 100%) !important;
97
+ }
98
+
99
+ .resizable_area {
100
+ resize: vertical;
101
+ overflow: auto !important;
102
+ }
103
+
104
+ .aspect_ratios label {
105
+ width: 140px !important;
106
+ }
107
+
108
+ .aspect_ratios label span {
109
+ white-space: nowrap !important;
110
+ }
111
+
112
+ .aspect_ratios label input {
113
+ margin-left: -5px !important;
114
+ }
115
+
116
+ .lora_enable label {
117
+ height: 100%;
118
+ }
119
+
120
+ .lora_enable label input {
121
+ margin: auto;
122
+ }
123
+
124
+ .lora_enable label span {
125
+ display: none;
126
+ }
127
+
128
+ @-moz-document url-prefix() {
129
+ .lora_weight input[type=number] {
130
+ width: 80px;
131
+ }
132
+ }
133
+
134
+ #context-menu{
135
+ z-index:9999;
136
+ position:absolute;
137
+ display:block;
138
+ padding:0px 0;
139
+ border:2px solid #a55000;
140
+ border-radius:8px;
141
+ box-shadow:1px 1px 2px #CE6400;
142
+ width: 200px;
143
+ }
144
+
145
+ .context-menu-items{
146
+ list-style: none;
147
+ margin: 0;
148
+ padding: 0;
149
+ }
150
+
151
+ .context-menu-items a{
152
+ display:block;
153
+ padding:5px;
154
+ cursor:pointer;
155
+ }
156
+
157
+ .context-menu-items a:hover{
158
+ background: #a55000;
159
+ }
160
+
161
+ .canvas-tooltip-info {
162
+ position: absolute;
163
+ top: 28px;
164
+ left: 2px;
165
+ cursor: help;
166
+ background-color: rgba(0, 0, 0, 0.3);
167
+ width: 20px;
168
+ height: 20px;
169
+ border-radius: 50%;
170
+ display: flex;
171
+ align-items: center;
172
+ justify-content: center;
173
+ flex-direction: column;
174
+
175
+ z-index: 100;
176
+ }
177
+
178
+ .canvas-tooltip-info::after {
179
+ content: '';
180
+ display: block;
181
+ width: 2px;
182
+ height: 7px;
183
+ background-color: white;
184
+ margin-top: 2px;
185
+ }
186
+
187
+ .canvas-tooltip-info::before {
188
+ content: '';
189
+ display: block;
190
+ width: 2px;
191
+ height: 2px;
192
+ background-color: white;
193
+ }
194
+
195
+ .canvas-tooltip-content {
196
+ display: none;
197
+ background-color: #f9f9f9;
198
+ color: #333;
199
+ border: 1px solid #ddd;
200
+ padding: 15px;
201
+ position: absolute;
202
+ top: 40px;
203
+ left: 10px;
204
+ width: 250px;
205
+ font-size: 16px;
206
+ opacity: 0;
207
+ border-radius: 8px;
208
+ box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
209
+
210
+ z-index: 100;
211
+ }
212
+
213
+ .canvas-tooltip:hover .canvas-tooltip-content {
214
+ display: block;
215
+ animation: fadeIn 0.5s;
216
+ opacity: 1;
217
+ }
218
+
219
+ @keyframes fadeIn {
220
+ from {opacity: 0;}
221
+ to {opacity: 1;}
222
+ }
223
+
224
+ .styler {
225
+ overflow:inherit !important;
226
+ }
227
+
228
+ .gradio-container{
229
+ overflow: visible;
230
+ }
231
+
232
+ /* fullpage image viewer */
233
+
234
+ #lightboxModal{
235
+ display: none;
236
+ position: fixed;
237
+ z-index: 1001;
238
+ left: 0;
239
+ top: 0;
240
+ width: 100%;
241
+ height: 100%;
242
+ overflow: auto;
243
+ background-color: rgba(20, 20, 20, 0.95);
244
+ user-select: none;
245
+ -webkit-user-select: none;
246
+ flex-direction: column;
247
+ }
248
+
249
+ .modalControls {
250
+ display: flex;
251
+ position: absolute;
252
+ right: 0px;
253
+ left: 0px;
254
+ gap: 1em;
255
+ padding: 1em;
256
+ background-color:rgba(0,0,0,0);
257
+ z-index: 1;
258
+ transition: 0.2s ease background-color;
259
+ }
260
+ .modalControls:hover {
261
+ background-color:rgba(0,0,0,0.9);
262
+ }
263
+ .modalClose {
264
+ margin-left: auto;
265
+ }
266
+ .modalControls span{
267
+ color: white;
268
+ text-shadow: 0px 0px 0.25em black;
269
+ font-size: 35px;
270
+ font-weight: bold;
271
+ cursor: pointer;
272
+ width: 1em;
273
+ }
274
+
275
+ .modalControls span:hover, .modalControls span:focus{
276
+ color: #999;
277
+ text-decoration: none;
278
+ }
279
+
280
+ #lightboxModal > img {
281
+ display: block;
282
+ margin: auto;
283
+ width: auto;
284
+ }
285
+
286
+ #lightboxModal > img.modalImageFullscreen{
287
+ object-fit: contain;
288
+ height: 100%;
289
+ width: 100%;
290
+ min-height: 0;
291
+ }
292
+
293
+ .modalPrev,
294
+ .modalNext {
295
+ cursor: pointer;
296
+ position: absolute;
297
+ top: 50%;
298
+ width: auto;
299
+ padding: 16px;
300
+ margin-top: -50px;
301
+ color: white;
302
+ font-weight: bold;
303
+ font-size: 20px;
304
+ transition: 0.6s ease;
305
+ border-radius: 0 3px 3px 0;
306
+ user-select: none;
307
+ -webkit-user-select: none;
308
+ }
309
+
310
+ .modalNext {
311
+ right: 0;
312
+ border-radius: 3px 0 0 3px;
313
+ }
314
+
315
+ .modalPrev:hover,
316
+ .modalNext:hover {
317
+ background-color: rgba(0, 0, 0, 0.8);
318
+ }
319
+
320
+ #imageARPreview {
321
+ position: absolute;
322
+ top: 0px;
323
+ left: 0px;
324
+ border: 2px solid red;
325
+ background: rgba(255, 0, 0, 0.3);
326
+ z-index: 900;
327
+ pointer-events: none;
328
+ display: none;
329
+ }
330
+
331
+ #stylePreviewOverlay {
332
+ opacity: 0;
333
+ pointer-events: none;
334
+ width: 128px;
335
+ height: 128px;
336
+ position: fixed;
337
+ top: 0px;
338
+ left: 0px;
339
+ border: solid 1px lightgrey;
340
+ transform: translate(-140px, 20px);
341
+ background-size: cover;
342
+ background-position: center;
343
+ background-color: rgba(0, 0, 0, 0.3);
344
+ border-radius: 5px;
345
+ z-index: 100;
346
+ transition: transform 0.1s ease, opacity 0.3s ease;
347
+ }
348
+
349
+ #stylePreviewOverlay.lower-half {
350
+ transform: translate(-140px, -140px);
351
+ }
352
+
353
+ /* scrollable box for style selections */
354
+ .contain .tabs {
355
+ height: 100%;
356
+ }
357
+
358
+ .contain .tabs .tabitem.style_selections_tab {
359
+ height: 100%;
360
+ }
361
+
362
+ .contain .tabs .tabitem.style_selections_tab > div:first-child {
363
+ height: 100%;
364
+ }
365
+
366
+ .contain .tabs .tabitem.style_selections_tab .style_selections {
367
+ min-height: 200px;
368
+ height: 100%;
369
+ }
370
+
371
+ .contain .tabs .tabitem.style_selections_tab .style_selections .wrap[data-testid="checkbox-group"] {
372
+ position: absolute; /* remove this to disable scrolling within the checkbox-group */
373
+ overflow: auto;
374
+ padding-right: 2px;
375
+ max-height: 100%;
376
+ }
377
+
378
+ .contain .tabs .tabitem.style_selections_tab .style_selections .wrap[data-testid="checkbox-group"] label {
379
+ /* max-width: calc(35% - 15px) !important; */ /* add this to enable 3 columns layout */
380
+ flex: calc(50% - 5px) !important;
381
+ }
382
+
383
+ .contain .tabs .tabitem.style_selections_tab .style_selections .wrap[data-testid="checkbox-group"] label span {
384
+ /* white-space:nowrap; */ /* add this to disable text wrapping (better choice for 3 columns layout) */
385
+ overflow: hidden;
386
+ text-overflow: ellipsis;
387
+ }
388
+
389
+ /* styles preview tooltip */
390
+ .preview-tooltip {
391
+ background-color: #fff8;
392
+ font-family: monospace;
393
+ text-align: center;
394
+ border-radius-top: 5px;
395
+ display: none; /* remove this to enable tooltip in preview image */
396
+ }
extras/BLIP/configs/bert_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 30522,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true
21
+ }
extras/BLIP/configs/caption_coco.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/coco/images/'
2
+ ann_root: 'annotation'
3
+ coco_gt_root: 'annotation/coco_gt'
4
+
5
+ # set pretrained as a file path or an url
6
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
7
+
8
+ # size of vit model; base or large
9
+ vit: 'base'
10
+ vit_grad_ckpt: False
11
+ vit_ckpt_layer: 0
12
+ batch_size: 32
13
+ init_lr: 1e-5
14
+
15
+ # vit: 'large'
16
+ # vit_grad_ckpt: True
17
+ # vit_ckpt_layer: 5
18
+ # batch_size: 16
19
+ # init_lr: 2e-6
20
+
21
+ image_size: 384
22
+
23
+ # generation configs
24
+ max_length: 20
25
+ min_length: 5
26
+ num_beams: 3
27
+ prompt: 'a picture of '
28
+
29
+ # optimizer
30
+ weight_decay: 0.05
31
+ min_lr: 0
32
+ max_epoch: 5
33
+
extras/BLIP/configs/med_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 30524,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true
21
+ }
extras/BLIP/configs/nlvr.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/NLVR2/'
2
+ ann_root: 'annotation'
3
+
4
+ # set pretrained as a file path or an url
5
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth'
6
+
7
+ #size of vit model; base or large
8
+ vit: 'base'
9
+ batch_size_train: 16
10
+ batch_size_test: 64
11
+ vit_grad_ckpt: False
12
+ vit_ckpt_layer: 0
13
+ max_epoch: 15
14
+
15
+ image_size: 384
16
+
17
+ # optimizer
18
+ weight_decay: 0.05
19
+ init_lr: 3e-5
20
+ min_lr: 0
21
+
extras/BLIP/configs/nocaps.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/nocaps/'
2
+ ann_root: 'annotation'
3
+
4
+ # set pretrained as a file path or an url
5
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
6
+
7
+ vit: 'base'
8
+ batch_size: 32
9
+
10
+ image_size: 384
11
+
12
+ max_length: 20
13
+ min_length: 5
14
+ num_beams: 3
15
+ prompt: 'a picture of '
extras/BLIP/configs/pretrain.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json',
2
+ '/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json',
3
+ ]
4
+ laion_path: ''
5
+
6
+ # size of vit model; base or large
7
+ vit: 'base'
8
+ vit_grad_ckpt: False
9
+ vit_ckpt_layer: 0
10
+
11
+ image_size: 224
12
+ batch_size: 75
13
+
14
+ queue_size: 57600
15
+ alpha: 0.4
16
+
17
+ # optimizer
18
+ weight_decay: 0.05
19
+ init_lr: 3e-4
20
+ min_lr: 1e-6
21
+ warmup_lr: 1e-6
22
+ lr_decay_rate: 0.9
23
+ max_epoch: 20
24
+ warmup_steps: 3000
25
+
26
+
27
+
extras/BLIP/configs/retrieval_coco.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/coco/images/'
2
+ ann_root: 'annotation'
3
+ dataset: 'coco'
4
+
5
+ # set pretrained as a file path or an url
6
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
7
+
8
+ # size of vit model; base or large
9
+
10
+ vit: 'base'
11
+ batch_size_train: 32
12
+ batch_size_test: 64
13
+ vit_grad_ckpt: True
14
+ vit_ckpt_layer: 4
15
+ init_lr: 1e-5
16
+
17
+ # vit: 'large'
18
+ # batch_size_train: 16
19
+ # batch_size_test: 32
20
+ # vit_grad_ckpt: True
21
+ # vit_ckpt_layer: 12
22
+ # init_lr: 5e-6
23
+
24
+ image_size: 384
25
+ queue_size: 57600
26
+ alpha: 0.4
27
+ k_test: 256
28
+ negative_all_rank: True
29
+
30
+ # optimizer
31
+ weight_decay: 0.05
32
+ min_lr: 0
33
+ max_epoch: 6
34
+
extras/BLIP/configs/retrieval_flickr.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/flickr30k/'
2
+ ann_root: 'annotation'
3
+ dataset: 'flickr'
4
+
5
+ # set pretrained as a file path or an url
6
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth'
7
+
8
+ # size of vit model; base or large
9
+
10
+ vit: 'base'
11
+ batch_size_train: 32
12
+ batch_size_test: 64
13
+ vit_grad_ckpt: True
14
+ vit_ckpt_layer: 4
15
+ init_lr: 1e-5
16
+
17
+ # vit: 'large'
18
+ # batch_size_train: 16
19
+ # batch_size_test: 32
20
+ # vit_grad_ckpt: True
21
+ # vit_ckpt_layer: 10
22
+ # init_lr: 5e-6
23
+
24
+ image_size: 384
25
+ queue_size: 57600
26
+ alpha: 0.4
27
+ k_test: 128
28
+ negative_all_rank: False
29
+
30
+ # optimizer
31
+ weight_decay: 0.05
32
+ min_lr: 0
33
+ max_epoch: 6
34
+
extras/BLIP/configs/retrieval_msrvtt.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos'
2
+ ann_root: 'annotation'
3
+
4
+ # set pretrained as a file path or an url
5
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
6
+
7
+ # size of vit model; base or large
8
+ vit: 'base'
9
+ batch_size: 64
10
+ k_test: 128
11
+ image_size: 384
12
+ num_frm_test: 8
extras/BLIP/configs/vqa.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/
2
+ vg_root: '/export/share/datasets/vision/visual-genome/' #followed by image/
3
+ train_files: ['vqa_train','vqa_val','vg_qa']
4
+ ann_root: 'annotation'
5
+
6
+ # set pretrained as a file path or an url
7
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
8
+
9
+ # size of vit model; base or large
10
+ vit: 'base'
11
+ batch_size_train: 16
12
+ batch_size_test: 32
13
+ vit_grad_ckpt: False
14
+ vit_ckpt_layer: 0
15
+ init_lr: 2e-5
16
+
17
+ image_size: 480
18
+
19
+ k_test: 128
20
+ inference: 'rank'
21
+
22
+ # optimizer
23
+ weight_decay: 0.05
24
+ min_lr: 0
25
+ max_epoch: 10
extras/BLIP/models/bert_tokenizer/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "gradient_checkpointing": false,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.6.0.dev0",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 30522
23
+ }
extras/BLIP/models/bert_tokenizer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
extras/BLIP/models/bert_tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "do_lower_case": true
3
+ }
extras/BLIP/models/bert_tokenizer/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
extras/BLIP/models/blip.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ import warnings
9
+ warnings.filterwarnings("ignore")
10
+
11
+ from extras.BLIP.models.vit import VisionTransformer, interpolate_pos_embed
12
+ from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
13
+ from transformers import BertTokenizer
14
+
15
+ import torch
16
+ from torch import nn
17
+ import torch.nn.functional as F
18
+
19
+ import os
20
+ from urllib.parse import urlparse
21
+ from timm.models.hub import download_cached_file
22
+
23
+ class BLIP_Base(nn.Module):
24
+ def __init__(self,
25
+ med_config = 'configs/med_config.json',
26
+ image_size = 224,
27
+ vit = 'base',
28
+ vit_grad_ckpt = False,
29
+ vit_ckpt_layer = 0,
30
+ ):
31
+ """
32
+ Args:
33
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
34
+ image_size (int): input image size
35
+ vit (str): model size of vision transformer
36
+ """
37
+ super().__init__()
38
+
39
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
40
+ self.tokenizer = init_tokenizer()
41
+ med_config = BertConfig.from_json_file(med_config)
42
+ med_config.encoder_width = vision_width
43
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
44
+
45
+
46
+ def forward(self, image, caption, mode):
47
+
48
+ assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
49
+ text = self.tokenizer(caption, return_tensors="pt").to(image.device)
50
+
51
+ if mode=='image':
52
+ # return image features
53
+ image_embeds = self.visual_encoder(image)
54
+ return image_embeds
55
+
56
+ elif mode=='text':
57
+ # return text features
58
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
59
+ return_dict = True, mode = 'text')
60
+ return text_output.last_hidden_state
61
+
62
+ elif mode=='multimodal':
63
+ # return multimodel features
64
+ image_embeds = self.visual_encoder(image)
65
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
66
+
67
+ text.input_ids[:,0] = self.tokenizer.enc_token_id
68
+ output = self.text_encoder(text.input_ids,
69
+ attention_mask = text.attention_mask,
70
+ encoder_hidden_states = image_embeds,
71
+ encoder_attention_mask = image_atts,
72
+ return_dict = True,
73
+ )
74
+ return output.last_hidden_state
75
+
76
+
77
+
78
+ class BLIP_Decoder(nn.Module):
79
+ def __init__(self,
80
+ med_config = 'configs/med_config.json',
81
+ image_size = 384,
82
+ vit = 'base',
83
+ vit_grad_ckpt = False,
84
+ vit_ckpt_layer = 0,
85
+ prompt = 'a picture of ',
86
+ ):
87
+ """
88
+ Args:
89
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
90
+ image_size (int): input image size
91
+ vit (str): model size of vision transformer
92
+ """
93
+ super().__init__()
94
+
95
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
96
+ self.tokenizer = init_tokenizer()
97
+ med_config = BertConfig.from_json_file(med_config)
98
+ med_config.encoder_width = vision_width
99
+ self.text_decoder = BertLMHeadModel(config=med_config)
100
+
101
+ self.prompt = prompt
102
+ self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
103
+
104
+
105
+ def forward(self, image, caption):
106
+
107
+ image_embeds = self.visual_encoder(image)
108
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
109
+
110
+ text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
111
+
112
+ text.input_ids[:,0] = self.tokenizer.bos_token_id
113
+
114
+ decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
115
+ decoder_targets[:,:self.prompt_length] = -100
116
+
117
+ decoder_output = self.text_decoder(text.input_ids,
118
+ attention_mask = text.attention_mask,
119
+ encoder_hidden_states = image_embeds,
120
+ encoder_attention_mask = image_atts,
121
+ labels = decoder_targets,
122
+ return_dict = True,
123
+ )
124
+ loss_lm = decoder_output.loss
125
+
126
+ return loss_lm
127
+
128
+ def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
129
+ image_embeds = self.visual_encoder(image)
130
+
131
+ if not sample:
132
+ image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
133
+
134
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
135
+ model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
136
+
137
+ prompt = [self.prompt] * image.size(0)
138
+ input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
139
+ input_ids[:,0] = self.tokenizer.bos_token_id
140
+ input_ids = input_ids[:, :-1]
141
+
142
+ if sample:
143
+ #nucleus sampling
144
+ outputs = self.text_decoder.generate(input_ids=input_ids,
145
+ max_length=max_length,
146
+ min_length=min_length,
147
+ do_sample=True,
148
+ top_p=top_p,
149
+ num_return_sequences=1,
150
+ eos_token_id=self.tokenizer.sep_token_id,
151
+ pad_token_id=self.tokenizer.pad_token_id,
152
+ repetition_penalty=1.1,
153
+ **model_kwargs)
154
+ else:
155
+ #beam search
156
+ outputs = self.text_decoder.generate(input_ids=input_ids,
157
+ max_length=max_length,
158
+ min_length=min_length,
159
+ num_beams=num_beams,
160
+ eos_token_id=self.tokenizer.sep_token_id,
161
+ pad_token_id=self.tokenizer.pad_token_id,
162
+ repetition_penalty=repetition_penalty,
163
+ **model_kwargs)
164
+
165
+ captions = []
166
+ for output in outputs:
167
+ caption = self.tokenizer.decode(output, skip_special_tokens=True)
168
+ captions.append(caption[len(self.prompt):])
169
+ return captions
170
+
171
+
172
+ def blip_decoder(pretrained='',**kwargs):
173
+ model = BLIP_Decoder(**kwargs)
174
+ if pretrained:
175
+ model,msg = load_checkpoint(model,pretrained)
176
+ assert(len(msg.missing_keys)==0)
177
+ return model
178
+
179
+ def blip_feature_extractor(pretrained='',**kwargs):
180
+ model = BLIP_Base(**kwargs)
181
+ if pretrained:
182
+ model,msg = load_checkpoint(model,pretrained)
183
+ assert(len(msg.missing_keys)==0)
184
+ return model
185
+
186
+ def init_tokenizer():
187
+ tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "bert_tokenizer")
188
+ tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
189
+ tokenizer.add_special_tokens({'bos_token':'[DEC]'})
190
+ tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
191
+ tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
192
+ return tokenizer
193
+
194
+
195
+ def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
196
+
197
+ assert vit in ['base', 'large'], "vit parameter must be base or large"
198
+ if vit=='base':
199
+ vision_width = 768
200
+ visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
201
+ num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
202
+ drop_path_rate=0 or drop_path_rate
203
+ )
204
+ elif vit=='large':
205
+ vision_width = 1024
206
+ visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
207
+ num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
208
+ drop_path_rate=0.1 or drop_path_rate
209
+ )
210
+ return visual_encoder, vision_width
211
+
212
+ def is_url(url_or_filename):
213
+ parsed = urlparse(url_or_filename)
214
+ return parsed.scheme in ("http", "https")
215
+
216
+ def load_checkpoint(model,url_or_filename):
217
+ if is_url(url_or_filename):
218
+ cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
219
+ checkpoint = torch.load(cached_file, map_location='cpu')
220
+ elif os.path.isfile(url_or_filename):
221
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
222
+ else:
223
+ raise RuntimeError('checkpoint url or path is invalid')
224
+
225
+ state_dict = checkpoint['model']
226
+
227
+ state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
228
+ if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
229
+ state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
230
+ model.visual_encoder_m)
231
+ for key in model.state_dict().keys():
232
+ if key in state_dict.keys():
233
+ if state_dict[key].shape!=model.state_dict()[key].shape:
234
+ del state_dict[key]
235
+
236
+ msg = model.load_state_dict(state_dict,strict=False)
237
+ print('load checkpoint from %s'%url_or_filename)
238
+ return model,msg
239
+
extras/BLIP/models/blip_itm.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig, BertModel
2
+ from transformers import BertTokenizer
3
+
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+
8
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
9
+
10
+ class BLIP_ITM(nn.Module):
11
+ def __init__(self,
12
+ med_config = 'configs/med_config.json',
13
+ image_size = 384,
14
+ vit = 'base',
15
+ vit_grad_ckpt = False,
16
+ vit_ckpt_layer = 0,
17
+ embed_dim = 256,
18
+ ):
19
+ """
20
+ Args:
21
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
22
+ image_size (int): input image size
23
+ vit (str): model size of vision transformer
24
+ """
25
+ super().__init__()
26
+
27
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
28
+ self.tokenizer = init_tokenizer()
29
+ med_config = BertConfig.from_json_file(med_config)
30
+ med_config.encoder_width = vision_width
31
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
32
+
33
+ text_width = self.text_encoder.config.hidden_size
34
+
35
+ self.vision_proj = nn.Linear(vision_width, embed_dim)
36
+ self.text_proj = nn.Linear(text_width, embed_dim)
37
+
38
+ self.itm_head = nn.Linear(text_width, 2)
39
+
40
+
41
+ def forward(self, image, caption, match_head='itm'):
42
+
43
+ image_embeds = self.visual_encoder(image)
44
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
45
+
46
+ text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
47
+ return_tensors="pt").to(image.device)
48
+
49
+
50
+ if match_head=='itm':
51
+ output = self.text_encoder(text.input_ids,
52
+ attention_mask = text.attention_mask,
53
+ encoder_hidden_states = image_embeds,
54
+ encoder_attention_mask = image_atts,
55
+ return_dict = True,
56
+ )
57
+ itm_output = self.itm_head(output.last_hidden_state[:,0,:])
58
+ return itm_output
59
+
60
+ elif match_head=='itc':
61
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
62
+ return_dict = True, mode = 'text')
63
+ image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
64
+ text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
65
+
66
+ sim = image_feat @ text_feat.t()
67
+ return sim
68
+
69
+
70
+ def blip_itm(pretrained='',**kwargs):
71
+ model = BLIP_ITM(**kwargs)
72
+ if pretrained:
73
+ model,msg = load_checkpoint(model,pretrained)
74
+ assert(len(msg.missing_keys)==0)
75
+ return model
76
+
extras/BLIP/models/blip_nlvr.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig
2
+ from extras.BLIP.models.nlvr_encoder import BertModel
3
+ from extras.BLIP.models.vit import interpolate_pos_embed
4
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, is_url
5
+
6
+ from timm.models.hub import download_cached_file
7
+
8
+ import torch
9
+ from torch import nn
10
+ import torch.nn.functional as F
11
+ from transformers import BertTokenizer
12
+ import numpy as np
13
+ import os
14
+
15
+
16
+ class BLIP_NLVR(nn.Module):
17
+ def __init__(self,
18
+ med_config = 'configs/med_config.json',
19
+ image_size = 480,
20
+ vit = 'base',
21
+ vit_grad_ckpt = False,
22
+ vit_ckpt_layer = 0,
23
+ ):
24
+ """
25
+ Args:
26
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
27
+ image_size (int): input image size
28
+ vit (str): model size of vision transformer
29
+ """
30
+ super().__init__()
31
+
32
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
33
+ self.tokenizer = init_tokenizer()
34
+ med_config = BertConfig.from_json_file(med_config)
35
+ med_config.encoder_width = vision_width
36
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
37
+
38
+ self.cls_head = nn.Sequential(
39
+ nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
40
+ nn.ReLU(),
41
+ nn.Linear(self.text_encoder.config.hidden_size, 2)
42
+ )
43
+
44
+ def forward(self, image, text, targets, train=True):
45
+
46
+ image_embeds = self.visual_encoder(image)
47
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
48
+ image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
49
+
50
+ text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
51
+ text.input_ids[:,0] = self.tokenizer.enc_token_id
52
+
53
+ output = self.text_encoder(text.input_ids,
54
+ attention_mask = text.attention_mask,
55
+ encoder_hidden_states = [image0_embeds,image1_embeds],
56
+ encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
57
+ image_atts[image0_embeds.size(0):]],
58
+ return_dict = True,
59
+ )
60
+ hidden_state = output.last_hidden_state[:,0,:]
61
+ prediction = self.cls_head(hidden_state)
62
+
63
+ if train:
64
+ loss = F.cross_entropy(prediction, targets)
65
+ return loss
66
+ else:
67
+ return prediction
68
+
69
+ def blip_nlvr(pretrained='',**kwargs):
70
+ model = BLIP_NLVR(**kwargs)
71
+ if pretrained:
72
+ model,msg = load_checkpoint(model,pretrained)
73
+ print("missing keys:")
74
+ print(msg.missing_keys)
75
+ return model
76
+
77
+
78
+ def load_checkpoint(model,url_or_filename):
79
+ if is_url(url_or_filename):
80
+ cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
81
+ checkpoint = torch.load(cached_file, map_location='cpu')
82
+ elif os.path.isfile(url_or_filename):
83
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
84
+ else:
85
+ raise RuntimeError('checkpoint url or path is invalid')
86
+ state_dict = checkpoint['model']
87
+
88
+ state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
89
+
90
+ for key in list(state_dict.keys()):
91
+ if 'crossattention.self.' in key:
92
+ new_key0 = key.replace('self','self0')
93
+ new_key1 = key.replace('self','self1')
94
+ state_dict[new_key0] = state_dict[key]
95
+ state_dict[new_key1] = state_dict[key]
96
+ elif 'crossattention.output.dense.' in key:
97
+ new_key0 = key.replace('dense','dense0')
98
+ new_key1 = key.replace('dense','dense1')
99
+ state_dict[new_key0] = state_dict[key]
100
+ state_dict[new_key1] = state_dict[key]
101
+
102
+ msg = model.load_state_dict(state_dict,strict=False)
103
+ print('load checkpoint from %s'%url_or_filename)
104
+ return model,msg
105
+
extras/BLIP/models/blip_pretrain.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
9
+ from transformers import BertTokenizer
10
+ import transformers
11
+ transformers.logging.set_verbosity_error()
12
+
13
+ import torch
14
+ from torch import nn
15
+ import torch.nn.functional as F
16
+
17
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
18
+
19
+ class BLIP_Pretrain(nn.Module):
20
+ def __init__(self,
21
+ med_config = 'configs/bert_config.json',
22
+ image_size = 224,
23
+ vit = 'base',
24
+ vit_grad_ckpt = False,
25
+ vit_ckpt_layer = 0,
26
+ embed_dim = 256,
27
+ queue_size = 57600,
28
+ momentum = 0.995,
29
+ ):
30
+ """
31
+ Args:
32
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
33
+ image_size (int): input image size
34
+ vit (str): model size of vision transformer
35
+ """
36
+ super().__init__()
37
+
38
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
39
+
40
+ if vit=='base':
41
+ checkpoint = torch.hub.load_state_dict_from_url(
42
+ url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
43
+ map_location="cpu", check_hash=True)
44
+ state_dict = checkpoint["model"]
45
+ msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
46
+ elif vit=='large':
47
+ from timm.models.helpers import load_custom_pretrained
48
+ from timm.models.vision_transformer import default_cfgs
49
+ load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])
50
+
51
+ self.tokenizer = init_tokenizer()
52
+ encoder_config = BertConfig.from_json_file(med_config)
53
+ encoder_config.encoder_width = vision_width
54
+ self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
55
+ self.text_encoder.resize_token_embeddings(len(self.tokenizer))
56
+
57
+ text_width = self.text_encoder.config.hidden_size
58
+
59
+ self.vision_proj = nn.Linear(vision_width, embed_dim)
60
+ self.text_proj = nn.Linear(text_width, embed_dim)
61
+
62
+ self.itm_head = nn.Linear(text_width, 2)
63
+
64
+ # create momentum encoders
65
+ self.visual_encoder_m, vision_width = create_vit(vit,image_size)
66
+ self.vision_proj_m = nn.Linear(vision_width, embed_dim)
67
+ self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
68
+ self.text_proj_m = nn.Linear(text_width, embed_dim)
69
+
70
+ self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
71
+ [self.vision_proj,self.vision_proj_m],
72
+ [self.text_encoder,self.text_encoder_m],
73
+ [self.text_proj,self.text_proj_m],
74
+ ]
75
+ self.copy_params()
76
+
77
+ # create the queue
78
+ self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
79
+ self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
80
+ self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
81
+
82
+ self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
83
+ self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
84
+
85
+ self.queue_size = queue_size
86
+ self.momentum = momentum
87
+ self.temp = nn.Parameter(0.07*torch.ones([]))
88
+
89
+ # create the decoder
90
+ decoder_config = BertConfig.from_json_file(med_config)
91
+ decoder_config.encoder_width = vision_width
92
+ self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)
93
+ self.text_decoder.resize_token_embeddings(len(self.tokenizer))
94
+ tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
95
+
96
+
97
+ def forward(self, image, caption, alpha):
98
+ with torch.no_grad():
99
+ self.temp.clamp_(0.001,0.5)
100
+
101
+ image_embeds = self.visual_encoder(image)
102
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
103
+ image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
104
+
105
+ text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30,
106
+ return_tensors="pt").to(image.device)
107
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
108
+ return_dict = True, mode = 'text')
109
+ text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
110
+
111
+ # get momentum features
112
+ with torch.no_grad():
113
+ self._momentum_update()
114
+ image_embeds_m = self.visual_encoder_m(image)
115
+ image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
116
+ image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
117
+
118
+ text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
119
+ return_dict = True, mode = 'text')
120
+ text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
121
+ text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
122
+
123
+ sim_i2t_m = image_feat_m @ text_feat_all / self.temp
124
+ sim_t2i_m = text_feat_m @ image_feat_all / self.temp
125
+
126
+ sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
127
+ sim_targets.fill_diagonal_(1)
128
+
129
+ sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
130
+ sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
131
+
132
+ sim_i2t = image_feat @ text_feat_all / self.temp
133
+ sim_t2i = text_feat @ image_feat_all / self.temp
134
+
135
+ loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
136
+ loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
137
+
138
+ loss_ita = (loss_i2t+loss_t2i)/2
139
+
140
+ self._dequeue_and_enqueue(image_feat_m, text_feat_m)
141
+
142
+ ###============== Image-text Matching ===================###
143
+ encoder_input_ids = text.input_ids.clone()
144
+ encoder_input_ids[:,0] = self.tokenizer.enc_token_id
145
+
146
+ # forward the positve image-text pair
147
+ bs = image.size(0)
148
+ output_pos = self.text_encoder(encoder_input_ids,
149
+ attention_mask = text.attention_mask,
150
+ encoder_hidden_states = image_embeds,
151
+ encoder_attention_mask = image_atts,
152
+ return_dict = True,
153
+ )
154
+ with torch.no_grad():
155
+ weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4
156
+ weights_t2i.fill_diagonal_(0)
157
+ weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4
158
+ weights_i2t.fill_diagonal_(0)
159
+
160
+ # select a negative image for each text
161
+ image_embeds_neg = []
162
+ for b in range(bs):
163
+ neg_idx = torch.multinomial(weights_t2i[b], 1).item()
164
+ image_embeds_neg.append(image_embeds[neg_idx])
165
+ image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
166
+
167
+ # select a negative text for each image
168
+ text_ids_neg = []
169
+ text_atts_neg = []
170
+ for b in range(bs):
171
+ neg_idx = torch.multinomial(weights_i2t[b], 1).item()
172
+ text_ids_neg.append(encoder_input_ids[neg_idx])
173
+ text_atts_neg.append(text.attention_mask[neg_idx])
174
+
175
+ text_ids_neg = torch.stack(text_ids_neg,dim=0)
176
+ text_atts_neg = torch.stack(text_atts_neg,dim=0)
177
+
178
+ text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
179
+ text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
180
+
181
+ image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
182
+ image_atts_all = torch.cat([image_atts,image_atts],dim=0)
183
+
184
+ output_neg = self.text_encoder(text_ids_all,
185
+ attention_mask = text_atts_all,
186
+ encoder_hidden_states = image_embeds_all,
187
+ encoder_attention_mask = image_atts_all,
188
+ return_dict = True,
189
+ )
190
+
191
+ vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
192
+ vl_output = self.itm_head(vl_embeddings)
193
+
194
+ itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
195
+ dim=0).to(image.device)
196
+ loss_itm = F.cross_entropy(vl_output, itm_labels)
197
+
198
+ ##================= LM ========================##
199
+ decoder_input_ids = text.input_ids.clone()
200
+ decoder_input_ids[:,0] = self.tokenizer.bos_token_id
201
+ decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
202
+
203
+ decoder_output = self.text_decoder(decoder_input_ids,
204
+ attention_mask = text.attention_mask,
205
+ encoder_hidden_states = image_embeds,
206
+ encoder_attention_mask = image_atts,
207
+ labels = decoder_targets,
208
+ return_dict = True,
209
+ )
210
+
211
+ loss_lm = decoder_output.loss
212
+ return loss_ita, loss_itm, loss_lm
213
+
214
+
215
+
216
+ @torch.no_grad()
217
+ def copy_params(self):
218
+ for model_pair in self.model_pairs:
219
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
220
+ param_m.data.copy_(param.data) # initialize
221
+ param_m.requires_grad = False # not update by gradient
222
+
223
+
224
+ @torch.no_grad()
225
+ def _momentum_update(self):
226
+ for model_pair in self.model_pairs:
227
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
228
+ param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
229
+
230
+
231
+ @torch.no_grad()
232
+ def _dequeue_and_enqueue(self, image_feat, text_feat):
233
+ # gather keys before updating queue
234
+ image_feats = concat_all_gather(image_feat)
235
+ text_feats = concat_all_gather(text_feat)
236
+
237
+ batch_size = image_feats.shape[0]
238
+
239
+ ptr = int(self.queue_ptr)
240
+ assert self.queue_size % batch_size == 0 # for simplicity
241
+
242
+ # replace the keys at ptr (dequeue and enqueue)
243
+ self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
244
+ self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
245
+ ptr = (ptr + batch_size) % self.queue_size # move pointer
246
+
247
+ self.queue_ptr[0] = ptr
248
+
249
+
250
+ def blip_pretrain(**kwargs):
251
+ model = BLIP_Pretrain(**kwargs)
252
+ return model
253
+
254
+
255
+ @torch.no_grad()
256
+ def concat_all_gather(tensor):
257
+ """
258
+ Performs all_gather operation on the provided tensors.
259
+ *** Warning ***: torch.distributed.all_gather has no gradient.
260
+ """
261
+ tensors_gather = [torch.ones_like(tensor)
262
+ for _ in range(torch.distributed.get_world_size())]
263
+ torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
264
+
265
+ output = torch.cat(tensors_gather, dim=0)
266
+ return output
267
+
268
+
269
+ from typing import List
270
+ def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
271
+ uninitialized_encoder_weights: List[str] = []
272
+ if decoder.__class__ != encoder.__class__:
273
+ print(
274
+ f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
275
+ )
276
+
277
+ def tie_encoder_to_decoder_recursively(
278
+ decoder_pointer: nn.Module,
279
+ encoder_pointer: nn.Module,
280
+ module_name: str,
281
+ uninitialized_encoder_weights: List[str],
282
+ skip_key: str,
283
+ depth=0,
284
+ ):
285
+ assert isinstance(decoder_pointer, nn.Module) and isinstance(
286
+ encoder_pointer, nn.Module
287
+ ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
288
+ if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
289
+ assert hasattr(encoder_pointer, "weight")
290
+ encoder_pointer.weight = decoder_pointer.weight
291
+ if hasattr(decoder_pointer, "bias"):
292
+ assert hasattr(encoder_pointer, "bias")
293
+ encoder_pointer.bias = decoder_pointer.bias
294
+ print(module_name+' is tied')
295
+ return
296
+
297
+ encoder_modules = encoder_pointer._modules
298
+ decoder_modules = decoder_pointer._modules
299
+ if len(decoder_modules) > 0:
300
+ assert (
301
+ len(encoder_modules) > 0
302
+ ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
303
+
304
+ all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
305
+ encoder_layer_pos = 0
306
+ for name, module in decoder_modules.items():
307
+ if name.isdigit():
308
+ encoder_name = str(int(name) + encoder_layer_pos)
309
+ decoder_name = name
310
+ if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
311
+ encoder_modules
312
+ ) != len(decoder_modules):
313
+ # this can happen if the name corresponds to the position in a list module list of layers
314
+ # in this case the decoder has added a cross-attention that the encoder does not have
315
+ # thus skip this step and subtract one layer pos from encoder
316
+ encoder_layer_pos -= 1
317
+ continue
318
+ elif name not in encoder_modules:
319
+ continue
320
+ elif depth > 500:
321
+ raise ValueError(
322
+ "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
323
+ )
324
+ else:
325
+ decoder_name = encoder_name = name
326
+ tie_encoder_to_decoder_recursively(
327
+ decoder_modules[decoder_name],
328
+ encoder_modules[encoder_name],
329
+ module_name + "/" + name,
330
+ uninitialized_encoder_weights,
331
+ skip_key,
332
+ depth=depth + 1,
333
+ )
334
+ all_encoder_weights.remove(module_name + "/" + encoder_name)
335
+
336
+ uninitialized_encoder_weights += list(all_encoder_weights)
337
+
338
+ # tie weights recursively
339
+ tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
extras/BLIP/models/blip_retrieval.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig, BertModel
2
+ from transformers import BertTokenizer
3
+
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+
8
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
9
+
10
+ class BLIP_Retrieval(nn.Module):
11
+ def __init__(self,
12
+ med_config = 'configs/med_config.json',
13
+ image_size = 384,
14
+ vit = 'base',
15
+ vit_grad_ckpt = False,
16
+ vit_ckpt_layer = 0,
17
+ embed_dim = 256,
18
+ queue_size = 57600,
19
+ momentum = 0.995,
20
+ negative_all_rank = False,
21
+ ):
22
+ """
23
+ Args:
24
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
25
+ image_size (int): input image size
26
+ vit (str): model size of vision transformer
27
+ """
28
+ super().__init__()
29
+
30
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
31
+ self.tokenizer = init_tokenizer()
32
+ med_config = BertConfig.from_json_file(med_config)
33
+ med_config.encoder_width = vision_width
34
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
35
+
36
+ text_width = self.text_encoder.config.hidden_size
37
+
38
+ self.vision_proj = nn.Linear(vision_width, embed_dim)
39
+ self.text_proj = nn.Linear(text_width, embed_dim)
40
+
41
+ self.itm_head = nn.Linear(text_width, 2)
42
+
43
+ # create momentum encoders
44
+ self.visual_encoder_m, vision_width = create_vit(vit,image_size)
45
+ self.vision_proj_m = nn.Linear(vision_width, embed_dim)
46
+ self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
47
+ self.text_proj_m = nn.Linear(text_width, embed_dim)
48
+
49
+ self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
50
+ [self.vision_proj,self.vision_proj_m],
51
+ [self.text_encoder,self.text_encoder_m],
52
+ [self.text_proj,self.text_proj_m],
53
+ ]
54
+ self.copy_params()
55
+
56
+ # create the queue
57
+ self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
58
+ self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
59
+ self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
60
+ self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
61
+
62
+ self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
63
+ self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
64
+
65
+ self.queue_size = queue_size
66
+ self.momentum = momentum
67
+ self.temp = nn.Parameter(0.07*torch.ones([]))
68
+
69
+ self.negative_all_rank = negative_all_rank
70
+
71
+
72
+ def forward(self, image, caption, alpha, idx):
73
+ with torch.no_grad():
74
+ self.temp.clamp_(0.001,0.5)
75
+
76
+ image_embeds = self.visual_encoder(image)
77
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
78
+ image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
79
+
80
+ text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
81
+ return_tensors="pt").to(image.device)
82
+
83
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
84
+ return_dict = True, mode = 'text')
85
+ text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
86
+
87
+ ###============== Image-text Contrastive Learning ===================###
88
+ idx = idx.view(-1,1)
89
+ idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
90
+ pos_idx = torch.eq(idx, idx_all).float()
91
+ sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
92
+
93
+ # get momentum features
94
+ with torch.no_grad():
95
+ self._momentum_update()
96
+ image_embeds_m = self.visual_encoder_m(image)
97
+ image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
98
+ image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
99
+
100
+ text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
101
+ return_dict = True, mode = 'text')
102
+ text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
103
+ text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
104
+
105
+ sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
106
+ sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
107
+
108
+ sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
109
+ sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
110
+
111
+ sim_i2t = image_feat @ text_feat_m_all / self.temp
112
+ sim_t2i = text_feat @ image_feat_m_all / self.temp
113
+
114
+ loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
115
+ loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
116
+
117
+ loss_ita = (loss_i2t+loss_t2i)/2
118
+
119
+ idxs = concat_all_gather(idx)
120
+ self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
121
+
122
+ ###============== Image-text Matching ===================###
123
+ encoder_input_ids = text.input_ids.clone()
124
+ encoder_input_ids[:,0] = self.tokenizer.enc_token_id
125
+
126
+ # forward the positve image-text pair
127
+ bs = image.size(0)
128
+ output_pos = self.text_encoder(encoder_input_ids,
129
+ attention_mask = text.attention_mask,
130
+ encoder_hidden_states = image_embeds,
131
+ encoder_attention_mask = image_atts,
132
+ return_dict = True,
133
+ )
134
+
135
+
136
+ if self.negative_all_rank:
137
+ # compute sample similarity
138
+ with torch.no_grad():
139
+ mask = torch.eq(idx, idxs.t())
140
+
141
+ image_feat_world = concat_all_gather(image_feat)
142
+ text_feat_world = concat_all_gather(text_feat)
143
+
144
+ sim_i2t = image_feat @ text_feat_world.t() / self.temp
145
+ sim_t2i = text_feat @ image_feat_world.t() / self.temp
146
+
147
+ weights_i2t = F.softmax(sim_i2t,dim=1)
148
+ weights_i2t.masked_fill_(mask, 0)
149
+
150
+ weights_t2i = F.softmax(sim_t2i,dim=1)
151
+ weights_t2i.masked_fill_(mask, 0)
152
+
153
+ image_embeds_world = all_gather_with_grad(image_embeds)
154
+
155
+ # select a negative image (from all ranks) for each text
156
+ image_embeds_neg = []
157
+ for b in range(bs):
158
+ neg_idx = torch.multinomial(weights_t2i[b], 1).item()
159
+ image_embeds_neg.append(image_embeds_world[neg_idx])
160
+ image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
161
+
162
+ # select a negative text (from all ranks) for each image
163
+ input_ids_world = concat_all_gather(encoder_input_ids)
164
+ att_mask_world = concat_all_gather(text.attention_mask)
165
+
166
+ text_ids_neg = []
167
+ text_atts_neg = []
168
+ for b in range(bs):
169
+ neg_idx = torch.multinomial(weights_i2t[b], 1).item()
170
+ text_ids_neg.append(input_ids_world[neg_idx])
171
+ text_atts_neg.append(att_mask_world[neg_idx])
172
+
173
+ else:
174
+ with torch.no_grad():
175
+ mask = torch.eq(idx, idx.t())
176
+
177
+ sim_i2t = image_feat @ text_feat.t() / self.temp
178
+ sim_t2i = text_feat @ image_feat.t() / self.temp
179
+
180
+ weights_i2t = F.softmax(sim_i2t,dim=1)
181
+ weights_i2t.masked_fill_(mask, 0)
182
+
183
+ weights_t2i = F.softmax(sim_t2i,dim=1)
184
+ weights_t2i.masked_fill_(mask, 0)
185
+
186
+ # select a negative image (from same rank) for each text
187
+ image_embeds_neg = []
188
+ for b in range(bs):
189
+ neg_idx = torch.multinomial(weights_t2i[b], 1).item()
190
+ image_embeds_neg.append(image_embeds[neg_idx])
191
+ image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
192
+
193
+ # select a negative text (from same rank) for each image
194
+ text_ids_neg = []
195
+ text_atts_neg = []
196
+ for b in range(bs):
197
+ neg_idx = torch.multinomial(weights_i2t[b], 1).item()
198
+ text_ids_neg.append(encoder_input_ids[neg_idx])
199
+ text_atts_neg.append(text.attention_mask[neg_idx])
200
+
201
+ text_ids_neg = torch.stack(text_ids_neg,dim=0)
202
+ text_atts_neg = torch.stack(text_atts_neg,dim=0)
203
+
204
+ text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
205
+ text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
206
+
207
+ image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
208
+ image_atts_all = torch.cat([image_atts,image_atts],dim=0)
209
+
210
+ output_neg = self.text_encoder(text_ids_all,
211
+ attention_mask = text_atts_all,
212
+ encoder_hidden_states = image_embeds_all,
213
+ encoder_attention_mask = image_atts_all,
214
+ return_dict = True,
215
+ )
216
+
217
+
218
+ vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
219
+ vl_output = self.itm_head(vl_embeddings)
220
+
221
+ itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
222
+ dim=0).to(image.device)
223
+ loss_itm = F.cross_entropy(vl_output, itm_labels)
224
+
225
+ return loss_ita, loss_itm
226
+
227
+
228
+ @torch.no_grad()
229
+ def copy_params(self):
230
+ for model_pair in self.model_pairs:
231
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
232
+ param_m.data.copy_(param.data) # initialize
233
+ param_m.requires_grad = False # not update by gradient
234
+
235
+
236
+ @torch.no_grad()
237
+ def _momentum_update(self):
238
+ for model_pair in self.model_pairs:
239
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
240
+ param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
241
+
242
+
243
+ @torch.no_grad()
244
+ def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
245
+ # gather keys before updating queue
246
+ image_feats = concat_all_gather(image_feat)
247
+ text_feats = concat_all_gather(text_feat)
248
+
249
+
250
+ batch_size = image_feats.shape[0]
251
+
252
+ ptr = int(self.ptr_queue)
253
+ assert self.queue_size % batch_size == 0 # for simplicity
254
+
255
+ # replace the keys at ptr (dequeue and enqueue)
256
+ self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
257
+ self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
258
+ self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
259
+ ptr = (ptr + batch_size) % self.queue_size # move pointer
260
+
261
+ self.ptr_queue[0] = ptr
262
+
263
+
264
+ def blip_retrieval(pretrained='',**kwargs):
265
+ model = BLIP_Retrieval(**kwargs)
266
+ if pretrained:
267
+ model,msg = load_checkpoint(model,pretrained)
268
+ print("missing keys:")
269
+ print(msg.missing_keys)
270
+ return model
271
+
272
+
273
+ @torch.no_grad()
274
+ def concat_all_gather(tensor):
275
+ """
276
+ Performs all_gather operation on the provided tensors.
277
+ *** Warning ***: torch.distributed.all_gather has no gradient.
278
+ """
279
+ tensors_gather = [torch.ones_like(tensor)
280
+ for _ in range(torch.distributed.get_world_size())]
281
+ torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
282
+
283
+ output = torch.cat(tensors_gather, dim=0)
284
+ return output
285
+
286
+
287
+ class GatherLayer(torch.autograd.Function):
288
+ """
289
+ Gather tensors from all workers with support for backward propagation:
290
+ This implementation does not cut the gradients as torch.distributed.all_gather does.
291
+ """
292
+
293
+ @staticmethod
294
+ def forward(ctx, x):
295
+ output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
296
+ torch.distributed.all_gather(output, x)
297
+ return tuple(output)
298
+
299
+ @staticmethod
300
+ def backward(ctx, *grads):
301
+ all_gradients = torch.stack(grads)
302
+ torch.distributed.all_reduce(all_gradients)
303
+ return all_gradients[torch.distributed.get_rank()]
304
+
305
+
306
+ def all_gather_with_grad(tensors):
307
+ """
308
+ Performs all_gather operation on the provided tensors.
309
+ Graph remains connected for backward grad computation.
310
+ """
311
+ # Queue the gathered tensors
312
+ world_size = torch.distributed.get_world_size()
313
+ # There is no need for reduction in the single-proc case
314
+ if world_size == 1:
315
+ return tensors
316
+
317
+ tensor_all = GatherLayer.apply(tensors)
318
+
319
+ return torch.cat(tensor_all, dim=0)
extras/BLIP/models/blip_vqa.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
2
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
3
+
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ from transformers import BertTokenizer
8
+ import numpy as np
9
+
10
+ class BLIP_VQA(nn.Module):
11
+ def __init__(self,
12
+ med_config = 'configs/med_config.json',
13
+ image_size = 480,
14
+ vit = 'base',
15
+ vit_grad_ckpt = False,
16
+ vit_ckpt_layer = 0,
17
+ ):
18
+ """
19
+ Args:
20
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
21
+ image_size (int): input image size
22
+ vit (str): model size of vision transformer
23
+ """
24
+ super().__init__()
25
+
26
+ self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
27
+ self.tokenizer = init_tokenizer()
28
+
29
+ encoder_config = BertConfig.from_json_file(med_config)
30
+ encoder_config.encoder_width = vision_width
31
+ self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
32
+
33
+ decoder_config = BertConfig.from_json_file(med_config)
34
+ self.text_decoder = BertLMHeadModel(config=decoder_config)
35
+
36
+
37
+ def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
38
+
39
+ image_embeds = self.visual_encoder(image)
40
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
41
+
42
+ question = self.tokenizer(question, padding='longest', truncation=True, max_length=35,
43
+ return_tensors="pt").to(image.device)
44
+ question.input_ids[:,0] = self.tokenizer.enc_token_id
45
+
46
+ if train:
47
+ '''
48
+ n: number of answers for each question
49
+ weights: weight for each answer
50
+ '''
51
+ answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device)
52
+ answer.input_ids[:,0] = self.tokenizer.bos_token_id
53
+ answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
54
+
55
+ question_output = self.text_encoder(question.input_ids,
56
+ attention_mask = question.attention_mask,
57
+ encoder_hidden_states = image_embeds,
58
+ encoder_attention_mask = image_atts,
59
+ return_dict = True)
60
+
61
+ question_states = []
62
+ question_atts = []
63
+ for b, n in enumerate(n):
64
+ question_states += [question_output.last_hidden_state[b]]*n
65
+ question_atts += [question.attention_mask[b]]*n
66
+ question_states = torch.stack(question_states,0)
67
+ question_atts = torch.stack(question_atts,0)
68
+
69
+ answer_output = self.text_decoder(answer.input_ids,
70
+ attention_mask = answer.attention_mask,
71
+ encoder_hidden_states = question_states,
72
+ encoder_attention_mask = question_atts,
73
+ labels = answer_targets,
74
+ return_dict = True,
75
+ reduction = 'none',
76
+ )
77
+
78
+ loss = weights * answer_output.loss
79
+ loss = loss.sum()/image.size(0)
80
+
81
+ return loss
82
+
83
+
84
+ else:
85
+ question_output = self.text_encoder(question.input_ids,
86
+ attention_mask = question.attention_mask,
87
+ encoder_hidden_states = image_embeds,
88
+ encoder_attention_mask = image_atts,
89
+ return_dict = True)
90
+
91
+ if inference=='generate':
92
+ num_beams = 3
93
+ question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
94
+ question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
95
+ model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
96
+
97
+ bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
98
+
99
+ outputs = self.text_decoder.generate(input_ids=bos_ids,
100
+ max_length=10,
101
+ min_length=1,
102
+ num_beams=num_beams,
103
+ eos_token_id=self.tokenizer.sep_token_id,
104
+ pad_token_id=self.tokenizer.pad_token_id,
105
+ **model_kwargs)
106
+
107
+ answers = []
108
+ for output in outputs:
109
+ answer = self.tokenizer.decode(output, skip_special_tokens=True)
110
+ answers.append(answer)
111
+ return answers
112
+
113
+ elif inference=='rank':
114
+ max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask,
115
+ answer.input_ids, answer.attention_mask, k_test)
116
+ return max_ids
117
+
118
+
119
+
120
+ def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
121
+
122
+ num_ques = question_states.size(0)
123
+ start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
124
+
125
+ start_output = self.text_decoder(start_ids,
126
+ encoder_hidden_states = question_states,
127
+ encoder_attention_mask = question_atts,
128
+ return_dict = True,
129
+ reduction = 'none')
130
+ logits = start_output.logits[:,0,:] # first token's logit
131
+
132
+ # topk_probs: top-k probability
133
+ # topk_ids: [num_question, k]
134
+ answer_first_token = answer_ids[:,1]
135
+ prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
136
+ topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
137
+
138
+ # answer input: [num_question*k, answer_len]
139
+ input_ids = []
140
+ input_atts = []
141
+ for b, topk_id in enumerate(topk_ids):
142
+ input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
143
+ input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
144
+ input_ids = torch.cat(input_ids,dim=0)
145
+ input_atts = torch.cat(input_atts,dim=0)
146
+
147
+ targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
148
+
149
+ # repeat encoder's output for top-k answers
150
+ question_states = tile(question_states, 0, k)
151
+ question_atts = tile(question_atts, 0, k)
152
+
153
+ output = self.text_decoder(input_ids,
154
+ attention_mask = input_atts,
155
+ encoder_hidden_states = question_states,
156
+ encoder_attention_mask = question_atts,
157
+ labels = targets_ids,
158
+ return_dict = True,
159
+ reduction = 'none')
160
+
161
+ log_probs_sum = -output.loss
162
+ log_probs_sum = log_probs_sum.view(num_ques,k)
163
+
164
+ max_topk_ids = log_probs_sum.argmax(dim=1)
165
+ max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
166
+
167
+ return max_ids
168
+
169
+
170
+ def blip_vqa(pretrained='',**kwargs):
171
+ model = BLIP_VQA(**kwargs)
172
+ if pretrained:
173
+ model,msg = load_checkpoint(model,pretrained)
174
+ # assert(len(msg.missing_keys)==0)
175
+ return model
176
+
177
+
178
+ def tile(x, dim, n_tile):
179
+ init_dim = x.size(dim)
180
+ repeat_idx = [1] * x.dim()
181
+ repeat_idx[dim] = n_tile
182
+ x = x.repeat(*(repeat_idx))
183
+ order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
184
+ return torch.index_select(x, dim, order_index.to(x.device))
185
+
186
+
extras/BLIP/models/med.py ADDED
@@ -0,0 +1,955 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on huggingface code base
8
+ * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
9
+ '''
10
+
11
+ import math
12
+ import os
13
+ import warnings
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Tuple
16
+
17
+ import torch
18
+ from torch import Tensor, device, dtype, nn
19
+ import torch.utils.checkpoint
20
+ from torch import nn
21
+ from torch.nn import CrossEntropyLoss
22
+ import torch.nn.functional as F
23
+
24
+ from transformers.activations import ACT2FN
25
+ from transformers.file_utils import (
26
+ ModelOutput,
27
+ )
28
+ from transformers.modeling_outputs import (
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPoolingAndCrossAttentions,
31
+ CausalLMOutputWithCrossAttentions,
32
+ MaskedLMOutput,
33
+ MultipleChoiceModelOutput,
34
+ NextSentencePredictorOutput,
35
+ QuestionAnsweringModelOutput,
36
+ SequenceClassifierOutput,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_utils import (
40
+ PreTrainedModel,
41
+ apply_chunking_to_forward,
42
+ find_pruneable_heads_and_indices,
43
+ prune_linear_layer,
44
+ )
45
+ from transformers.utils import logging
46
+ from transformers.models.bert.configuration_bert import BertConfig
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+
52
+ class BertEmbeddings(nn.Module):
53
+ """Construct the embeddings from word and position embeddings."""
54
+
55
+ def __init__(self, config):
56
+ super().__init__()
57
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
58
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
59
+
60
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
61
+ # any TensorFlow checkpoint file
62
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
63
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
64
+
65
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
66
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
67
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
68
+
69
+ self.config = config
70
+
71
+ def forward(
72
+ self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
73
+ ):
74
+ if input_ids is not None:
75
+ input_shape = input_ids.size()
76
+ else:
77
+ input_shape = inputs_embeds.size()[:-1]
78
+
79
+ seq_length = input_shape[1]
80
+
81
+ if position_ids is None:
82
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
83
+
84
+ if inputs_embeds is None:
85
+ inputs_embeds = self.word_embeddings(input_ids)
86
+
87
+ embeddings = inputs_embeds
88
+
89
+ if self.position_embedding_type == "absolute":
90
+ position_embeddings = self.position_embeddings(position_ids)
91
+ embeddings += position_embeddings
92
+ embeddings = self.LayerNorm(embeddings)
93
+ embeddings = self.dropout(embeddings)
94
+ return embeddings
95
+
96
+
97
+ class BertSelfAttention(nn.Module):
98
+ def __init__(self, config, is_cross_attention):
99
+ super().__init__()
100
+ self.config = config
101
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
102
+ raise ValueError(
103
+ "The hidden size (%d) is not a multiple of the number of attention "
104
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
105
+ )
106
+
107
+ self.num_attention_heads = config.num_attention_heads
108
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
109
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
110
+
111
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
112
+ if is_cross_attention:
113
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
114
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
115
+ else:
116
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
117
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
118
+
119
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
120
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
121
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
122
+ self.max_position_embeddings = config.max_position_embeddings
123
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
124
+ self.save_attention = False
125
+
126
+ def save_attn_gradients(self, attn_gradients):
127
+ self.attn_gradients = attn_gradients
128
+
129
+ def get_attn_gradients(self):
130
+ return self.attn_gradients
131
+
132
+ def save_attention_map(self, attention_map):
133
+ self.attention_map = attention_map
134
+
135
+ def get_attention_map(self):
136
+ return self.attention_map
137
+
138
+ def transpose_for_scores(self, x):
139
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
140
+ x = x.view(*new_x_shape)
141
+ return x.permute(0, 2, 1, 3)
142
+
143
+ def forward(
144
+ self,
145
+ hidden_states,
146
+ attention_mask=None,
147
+ head_mask=None,
148
+ encoder_hidden_states=None,
149
+ encoder_attention_mask=None,
150
+ past_key_value=None,
151
+ output_attentions=False,
152
+ ):
153
+ mixed_query_layer = self.query(hidden_states)
154
+
155
+ # If this is instantiated as a cross-attention module, the keys
156
+ # and values come from an encoder; the attention mask needs to be
157
+ # such that the encoder's padding tokens are not attended to.
158
+ is_cross_attention = encoder_hidden_states is not None
159
+
160
+ if is_cross_attention:
161
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
162
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
163
+ attention_mask = encoder_attention_mask
164
+ elif past_key_value is not None:
165
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
166
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
167
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
168
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
169
+ else:
170
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
171
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
172
+
173
+ query_layer = self.transpose_for_scores(mixed_query_layer)
174
+
175
+ past_key_value = (key_layer, value_layer)
176
+
177
+ # Take the dot product between "query" and "key" to get the raw attention scores.
178
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
179
+
180
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
181
+ seq_length = hidden_states.size()[1]
182
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
183
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
184
+ distance = position_ids_l - position_ids_r
185
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
186
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
187
+
188
+ if self.position_embedding_type == "relative_key":
189
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
190
+ attention_scores = attention_scores + relative_position_scores
191
+ elif self.position_embedding_type == "relative_key_query":
192
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
193
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
194
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
195
+
196
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
197
+ if attention_mask is not None:
198
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
199
+ attention_scores = attention_scores + attention_mask
200
+
201
+ # Normalize the attention scores to probabilities.
202
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
203
+
204
+ if is_cross_attention and self.save_attention:
205
+ self.save_attention_map(attention_probs)
206
+ attention_probs.register_hook(self.save_attn_gradients)
207
+
208
+ # This is actually dropping out entire tokens to attend to, which might
209
+ # seem a bit unusual, but is taken from the original Transformer paper.
210
+ attention_probs_dropped = self.dropout(attention_probs)
211
+
212
+ # Mask heads if we want to
213
+ if head_mask is not None:
214
+ attention_probs_dropped = attention_probs_dropped * head_mask
215
+
216
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
217
+
218
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
219
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
220
+ context_layer = context_layer.view(*new_context_layer_shape)
221
+
222
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
223
+
224
+ outputs = outputs + (past_key_value,)
225
+ return outputs
226
+
227
+
228
+ class BertSelfOutput(nn.Module):
229
+ def __init__(self, config):
230
+ super().__init__()
231
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
232
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
233
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
234
+
235
+ def forward(self, hidden_states, input_tensor):
236
+ hidden_states = self.dense(hidden_states)
237
+ hidden_states = self.dropout(hidden_states)
238
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
239
+ return hidden_states
240
+
241
+
242
+ class BertAttention(nn.Module):
243
+ def __init__(self, config, is_cross_attention=False):
244
+ super().__init__()
245
+ self.self = BertSelfAttention(config, is_cross_attention)
246
+ self.output = BertSelfOutput(config)
247
+ self.pruned_heads = set()
248
+
249
+ def prune_heads(self, heads):
250
+ if len(heads) == 0:
251
+ return
252
+ heads, index = find_pruneable_heads_and_indices(
253
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
254
+ )
255
+
256
+ # Prune linear layers
257
+ self.self.query = prune_linear_layer(self.self.query, index)
258
+ self.self.key = prune_linear_layer(self.self.key, index)
259
+ self.self.value = prune_linear_layer(self.self.value, index)
260
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
261
+
262
+ # Update hyper params and store pruned heads
263
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
264
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
265
+ self.pruned_heads = self.pruned_heads.union(heads)
266
+
267
+ def forward(
268
+ self,
269
+ hidden_states,
270
+ attention_mask=None,
271
+ head_mask=None,
272
+ encoder_hidden_states=None,
273
+ encoder_attention_mask=None,
274
+ past_key_value=None,
275
+ output_attentions=False,
276
+ ):
277
+ self_outputs = self.self(
278
+ hidden_states,
279
+ attention_mask,
280
+ head_mask,
281
+ encoder_hidden_states,
282
+ encoder_attention_mask,
283
+ past_key_value,
284
+ output_attentions,
285
+ )
286
+ attention_output = self.output(self_outputs[0], hidden_states)
287
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
288
+ return outputs
289
+
290
+
291
+ class BertIntermediate(nn.Module):
292
+ def __init__(self, config):
293
+ super().__init__()
294
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
295
+ if isinstance(config.hidden_act, str):
296
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
297
+ else:
298
+ self.intermediate_act_fn = config.hidden_act
299
+
300
+ def forward(self, hidden_states):
301
+ hidden_states = self.dense(hidden_states)
302
+ hidden_states = self.intermediate_act_fn(hidden_states)
303
+ return hidden_states
304
+
305
+
306
+ class BertOutput(nn.Module):
307
+ def __init__(self, config):
308
+ super().__init__()
309
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
310
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
311
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
312
+
313
+ def forward(self, hidden_states, input_tensor):
314
+ hidden_states = self.dense(hidden_states)
315
+ hidden_states = self.dropout(hidden_states)
316
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
317
+ return hidden_states
318
+
319
+
320
+ class BertLayer(nn.Module):
321
+ def __init__(self, config, layer_num):
322
+ super().__init__()
323
+ self.config = config
324
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
325
+ self.seq_len_dim = 1
326
+ self.attention = BertAttention(config)
327
+ self.layer_num = layer_num
328
+ if self.config.add_cross_attention:
329
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
330
+ self.intermediate = BertIntermediate(config)
331
+ self.output = BertOutput(config)
332
+
333
+ def forward(
334
+ self,
335
+ hidden_states,
336
+ attention_mask=None,
337
+ head_mask=None,
338
+ encoder_hidden_states=None,
339
+ encoder_attention_mask=None,
340
+ past_key_value=None,
341
+ output_attentions=False,
342
+ mode=None,
343
+ ):
344
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
345
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
346
+ self_attention_outputs = self.attention(
347
+ hidden_states,
348
+ attention_mask,
349
+ head_mask,
350
+ output_attentions=output_attentions,
351
+ past_key_value=self_attn_past_key_value,
352
+ )
353
+ attention_output = self_attention_outputs[0]
354
+
355
+ outputs = self_attention_outputs[1:-1]
356
+ present_key_value = self_attention_outputs[-1]
357
+
358
+ if mode=='multimodal':
359
+ assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
360
+
361
+ cross_attention_outputs = self.crossattention(
362
+ attention_output,
363
+ attention_mask,
364
+ head_mask,
365
+ encoder_hidden_states,
366
+ encoder_attention_mask,
367
+ output_attentions=output_attentions,
368
+ )
369
+ attention_output = cross_attention_outputs[0]
370
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
371
+ layer_output = apply_chunking_to_forward(
372
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
373
+ )
374
+ outputs = (layer_output,) + outputs
375
+
376
+ outputs = outputs + (present_key_value,)
377
+
378
+ return outputs
379
+
380
+ def feed_forward_chunk(self, attention_output):
381
+ intermediate_output = self.intermediate(attention_output)
382
+ layer_output = self.output(intermediate_output, attention_output)
383
+ return layer_output
384
+
385
+
386
+ class BertEncoder(nn.Module):
387
+ def __init__(self, config):
388
+ super().__init__()
389
+ self.config = config
390
+ self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
391
+ self.gradient_checkpointing = False
392
+
393
+ def forward(
394
+ self,
395
+ hidden_states,
396
+ attention_mask=None,
397
+ head_mask=None,
398
+ encoder_hidden_states=None,
399
+ encoder_attention_mask=None,
400
+ past_key_values=None,
401
+ use_cache=None,
402
+ output_attentions=False,
403
+ output_hidden_states=False,
404
+ return_dict=True,
405
+ mode='multimodal',
406
+ ):
407
+ all_hidden_states = () if output_hidden_states else None
408
+ all_self_attentions = () if output_attentions else None
409
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
410
+
411
+ next_decoder_cache = () if use_cache else None
412
+
413
+ for i in range(self.config.num_hidden_layers):
414
+ layer_module = self.layer[i]
415
+ if output_hidden_states:
416
+ all_hidden_states = all_hidden_states + (hidden_states,)
417
+
418
+ layer_head_mask = head_mask[i] if head_mask is not None else None
419
+ past_key_value = past_key_values[i] if past_key_values is not None else None
420
+
421
+ if self.gradient_checkpointing and self.training:
422
+
423
+ if use_cache:
424
+ logger.warn(
425
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
426
+ )
427
+ use_cache = False
428
+
429
+ def create_custom_forward(module):
430
+ def custom_forward(*inputs):
431
+ return module(*inputs, past_key_value, output_attentions)
432
+
433
+ return custom_forward
434
+
435
+ layer_outputs = torch.utils.checkpoint.checkpoint(
436
+ create_custom_forward(layer_module),
437
+ hidden_states,
438
+ attention_mask,
439
+ layer_head_mask,
440
+ encoder_hidden_states,
441
+ encoder_attention_mask,
442
+ mode=mode,
443
+ )
444
+ else:
445
+ layer_outputs = layer_module(
446
+ hidden_states,
447
+ attention_mask,
448
+ layer_head_mask,
449
+ encoder_hidden_states,
450
+ encoder_attention_mask,
451
+ past_key_value,
452
+ output_attentions,
453
+ mode=mode,
454
+ )
455
+
456
+ hidden_states = layer_outputs[0]
457
+ if use_cache:
458
+ next_decoder_cache += (layer_outputs[-1],)
459
+ if output_attentions:
460
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
461
+
462
+ if output_hidden_states:
463
+ all_hidden_states = all_hidden_states + (hidden_states,)
464
+
465
+ if not return_dict:
466
+ return tuple(
467
+ v
468
+ for v in [
469
+ hidden_states,
470
+ next_decoder_cache,
471
+ all_hidden_states,
472
+ all_self_attentions,
473
+ all_cross_attentions,
474
+ ]
475
+ if v is not None
476
+ )
477
+ return BaseModelOutputWithPastAndCrossAttentions(
478
+ last_hidden_state=hidden_states,
479
+ past_key_values=next_decoder_cache,
480
+ hidden_states=all_hidden_states,
481
+ attentions=all_self_attentions,
482
+ cross_attentions=all_cross_attentions,
483
+ )
484
+
485
+
486
+ class BertPooler(nn.Module):
487
+ def __init__(self, config):
488
+ super().__init__()
489
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
490
+ self.activation = nn.Tanh()
491
+
492
+ def forward(self, hidden_states):
493
+ # We "pool" the model by simply taking the hidden state corresponding
494
+ # to the first token.
495
+ first_token_tensor = hidden_states[:, 0]
496
+ pooled_output = self.dense(first_token_tensor)
497
+ pooled_output = self.activation(pooled_output)
498
+ return pooled_output
499
+
500
+
501
+ class BertPredictionHeadTransform(nn.Module):
502
+ def __init__(self, config):
503
+ super().__init__()
504
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
505
+ if isinstance(config.hidden_act, str):
506
+ self.transform_act_fn = ACT2FN[config.hidden_act]
507
+ else:
508
+ self.transform_act_fn = config.hidden_act
509
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
510
+
511
+ def forward(self, hidden_states):
512
+ hidden_states = self.dense(hidden_states)
513
+ hidden_states = self.transform_act_fn(hidden_states)
514
+ hidden_states = self.LayerNorm(hidden_states)
515
+ return hidden_states
516
+
517
+
518
+ class BertLMPredictionHead(nn.Module):
519
+ def __init__(self, config):
520
+ super().__init__()
521
+ self.transform = BertPredictionHeadTransform(config)
522
+
523
+ # The output weights are the same as the input embeddings, but there is
524
+ # an output-only bias for each token.
525
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
526
+
527
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
528
+
529
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
530
+ self.decoder.bias = self.bias
531
+
532
+ def forward(self, hidden_states):
533
+ hidden_states = self.transform(hidden_states)
534
+ hidden_states = self.decoder(hidden_states)
535
+ return hidden_states
536
+
537
+
538
+ class BertOnlyMLMHead(nn.Module):
539
+ def __init__(self, config):
540
+ super().__init__()
541
+ self.predictions = BertLMPredictionHead(config)
542
+
543
+ def forward(self, sequence_output):
544
+ prediction_scores = self.predictions(sequence_output)
545
+ return prediction_scores
546
+
547
+
548
+ class BertPreTrainedModel(PreTrainedModel):
549
+ """
550
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
551
+ models.
552
+ """
553
+
554
+ config_class = BertConfig
555
+ base_model_prefix = "bert"
556
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
557
+
558
+ def _init_weights(self, module):
559
+ """ Initialize the weights """
560
+ if isinstance(module, (nn.Linear, nn.Embedding)):
561
+ # Slightly different from the TF version which uses truncated_normal for initialization
562
+ # cf https://github.com/pytorch/pytorch/pull/5617
563
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
564
+ elif isinstance(module, nn.LayerNorm):
565
+ module.bias.data.zero_()
566
+ module.weight.data.fill_(1.0)
567
+ if isinstance(module, nn.Linear) and module.bias is not None:
568
+ module.bias.data.zero_()
569
+
570
+
571
+ class BertModel(BertPreTrainedModel):
572
+ """
573
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
574
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
575
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
576
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
577
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
578
+ input to the forward pass.
579
+ """
580
+
581
+ def __init__(self, config, add_pooling_layer=True):
582
+ super().__init__(config)
583
+ self.config = config
584
+
585
+ self.embeddings = BertEmbeddings(config)
586
+
587
+ self.encoder = BertEncoder(config)
588
+
589
+ self.pooler = BertPooler(config) if add_pooling_layer else None
590
+
591
+ self.init_weights()
592
+
593
+
594
+ def get_input_embeddings(self):
595
+ return self.embeddings.word_embeddings
596
+
597
+ def set_input_embeddings(self, value):
598
+ self.embeddings.word_embeddings = value
599
+
600
+ def _prune_heads(self, heads_to_prune):
601
+ """
602
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
603
+ class PreTrainedModel
604
+ """
605
+ for layer, heads in heads_to_prune.items():
606
+ self.encoder.layer[layer].attention.prune_heads(heads)
607
+
608
+
609
+ def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
610
+ """
611
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
612
+
613
+ Arguments:
614
+ attention_mask (:obj:`torch.Tensor`):
615
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
616
+ input_shape (:obj:`Tuple[int]`):
617
+ The shape of the input to the model.
618
+ device: (:obj:`torch.device`):
619
+ The device of the input to the model.
620
+
621
+ Returns:
622
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
623
+ """
624
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
625
+ # ourselves in which case we just need to make it broadcastable to all heads.
626
+ if attention_mask.dim() == 3:
627
+ extended_attention_mask = attention_mask[:, None, :, :]
628
+ elif attention_mask.dim() == 2:
629
+ # Provided a padding mask of dimensions [batch_size, seq_length]
630
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
631
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
632
+ if is_decoder:
633
+ batch_size, seq_length = input_shape
634
+
635
+ seq_ids = torch.arange(seq_length, device=device)
636
+ causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
637
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
638
+ # causal and attention masks must have same type with pytorch version < 1.3
639
+ causal_mask = causal_mask.to(attention_mask.dtype)
640
+
641
+ if causal_mask.shape[1] < attention_mask.shape[1]:
642
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
643
+ causal_mask = torch.cat(
644
+ [
645
+ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
646
+ causal_mask,
647
+ ],
648
+ axis=-1,
649
+ )
650
+
651
+ extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
652
+ else:
653
+ extended_attention_mask = attention_mask[:, None, None, :]
654
+ else:
655
+ raise ValueError(
656
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
657
+ input_shape, attention_mask.shape
658
+ )
659
+ )
660
+
661
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
662
+ # masked positions, this operation will create a tensor which is 0.0 for
663
+ # positions we want to attend and -10000.0 for masked positions.
664
+ # Since we are adding it to the raw scores before the softmax, this is
665
+ # effectively the same as removing these entirely.
666
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
667
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
668
+ return extended_attention_mask
669
+
670
+ def forward(
671
+ self,
672
+ input_ids=None,
673
+ attention_mask=None,
674
+ position_ids=None,
675
+ head_mask=None,
676
+ inputs_embeds=None,
677
+ encoder_embeds=None,
678
+ encoder_hidden_states=None,
679
+ encoder_attention_mask=None,
680
+ past_key_values=None,
681
+ use_cache=None,
682
+ output_attentions=None,
683
+ output_hidden_states=None,
684
+ return_dict=None,
685
+ is_decoder=False,
686
+ mode='multimodal',
687
+ ):
688
+ r"""
689
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
690
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
691
+ the model is configured as a decoder.
692
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
693
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
694
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
695
+ - 1 for tokens that are **not masked**,
696
+ - 0 for tokens that are **masked**.
697
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
698
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
699
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
700
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
701
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
702
+ use_cache (:obj:`bool`, `optional`):
703
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
704
+ decoding (see :obj:`past_key_values`).
705
+ """
706
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
707
+ output_hidden_states = (
708
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
709
+ )
710
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
711
+
712
+ if is_decoder:
713
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
714
+ else:
715
+ use_cache = False
716
+
717
+ if input_ids is not None and inputs_embeds is not None:
718
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
719
+ elif input_ids is not None:
720
+ input_shape = input_ids.size()
721
+ batch_size, seq_length = input_shape
722
+ device = input_ids.device
723
+ elif inputs_embeds is not None:
724
+ input_shape = inputs_embeds.size()[:-1]
725
+ batch_size, seq_length = input_shape
726
+ device = inputs_embeds.device
727
+ elif encoder_embeds is not None:
728
+ input_shape = encoder_embeds.size()[:-1]
729
+ batch_size, seq_length = input_shape
730
+ device = encoder_embeds.device
731
+ else:
732
+ raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
733
+
734
+ # past_key_values_length
735
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
736
+
737
+ if attention_mask is None:
738
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
739
+
740
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
741
+ # ourselves in which case we just need to make it broadcastable to all heads.
742
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
743
+ device, is_decoder)
744
+
745
+ # If a 2D or 3D attention mask is provided for the cross-attention
746
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
747
+ if encoder_hidden_states is not None:
748
+ if type(encoder_hidden_states) == list:
749
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
750
+ else:
751
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
752
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
753
+
754
+ if type(encoder_attention_mask) == list:
755
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
756
+ elif encoder_attention_mask is None:
757
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
758
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
759
+ else:
760
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
761
+ else:
762
+ encoder_extended_attention_mask = None
763
+
764
+ # Prepare head mask if needed
765
+ # 1.0 in head_mask indicate we keep the head
766
+ # attention_probs has shape bsz x n_heads x N x N
767
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
768
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
769
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
770
+
771
+ if encoder_embeds is None:
772
+ embedding_output = self.embeddings(
773
+ input_ids=input_ids,
774
+ position_ids=position_ids,
775
+ inputs_embeds=inputs_embeds,
776
+ past_key_values_length=past_key_values_length,
777
+ )
778
+ else:
779
+ embedding_output = encoder_embeds
780
+
781
+ encoder_outputs = self.encoder(
782
+ embedding_output,
783
+ attention_mask=extended_attention_mask,
784
+ head_mask=head_mask,
785
+ encoder_hidden_states=encoder_hidden_states,
786
+ encoder_attention_mask=encoder_extended_attention_mask,
787
+ past_key_values=past_key_values,
788
+ use_cache=use_cache,
789
+ output_attentions=output_attentions,
790
+ output_hidden_states=output_hidden_states,
791
+ return_dict=return_dict,
792
+ mode=mode,
793
+ )
794
+ sequence_output = encoder_outputs[0]
795
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
796
+
797
+ if not return_dict:
798
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
799
+
800
+ return BaseModelOutputWithPoolingAndCrossAttentions(
801
+ last_hidden_state=sequence_output,
802
+ pooler_output=pooled_output,
803
+ past_key_values=encoder_outputs.past_key_values,
804
+ hidden_states=encoder_outputs.hidden_states,
805
+ attentions=encoder_outputs.attentions,
806
+ cross_attentions=encoder_outputs.cross_attentions,
807
+ )
808
+
809
+
810
+
811
+ class BertLMHeadModel(BertPreTrainedModel):
812
+
813
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
814
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
815
+
816
+ def __init__(self, config):
817
+ super().__init__(config)
818
+
819
+ self.bert = BertModel(config, add_pooling_layer=False)
820
+ self.cls = BertOnlyMLMHead(config)
821
+
822
+ self.init_weights()
823
+
824
+ def get_output_embeddings(self):
825
+ return self.cls.predictions.decoder
826
+
827
+ def set_output_embeddings(self, new_embeddings):
828
+ self.cls.predictions.decoder = new_embeddings
829
+
830
+ def forward(
831
+ self,
832
+ input_ids=None,
833
+ attention_mask=None,
834
+ position_ids=None,
835
+ head_mask=None,
836
+ inputs_embeds=None,
837
+ encoder_hidden_states=None,
838
+ encoder_attention_mask=None,
839
+ labels=None,
840
+ past_key_values=None,
841
+ use_cache=None,
842
+ output_attentions=None,
843
+ output_hidden_states=None,
844
+ return_dict=None,
845
+ return_logits=False,
846
+ is_decoder=True,
847
+ reduction='mean',
848
+ mode='multimodal',
849
+ ):
850
+ r"""
851
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
852
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
853
+ the model is configured as a decoder.
854
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
855
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
856
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
857
+ - 1 for tokens that are **not masked**,
858
+ - 0 for tokens that are **masked**.
859
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
860
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
861
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
862
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
863
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
864
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
865
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
866
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
867
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
868
+ use_cache (:obj:`bool`, `optional`):
869
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
870
+ decoding (see :obj:`past_key_values`).
871
+ Returns:
872
+ Example::
873
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
874
+ >>> import torch
875
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
876
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
877
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
878
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
879
+ >>> outputs = model(**inputs)
880
+ >>> prediction_logits = outputs.logits
881
+ """
882
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
883
+ if labels is not None:
884
+ use_cache = False
885
+
886
+ outputs = self.bert(
887
+ input_ids,
888
+ attention_mask=attention_mask,
889
+ position_ids=position_ids,
890
+ head_mask=head_mask,
891
+ inputs_embeds=inputs_embeds,
892
+ encoder_hidden_states=encoder_hidden_states,
893
+ encoder_attention_mask=encoder_attention_mask,
894
+ past_key_values=past_key_values,
895
+ use_cache=use_cache,
896
+ output_attentions=output_attentions,
897
+ output_hidden_states=output_hidden_states,
898
+ return_dict=return_dict,
899
+ is_decoder=is_decoder,
900
+ mode=mode,
901
+ )
902
+
903
+ sequence_output = outputs[0]
904
+ prediction_scores = self.cls(sequence_output)
905
+
906
+ if return_logits:
907
+ return prediction_scores[:, :-1, :].contiguous()
908
+
909
+ lm_loss = None
910
+ if labels is not None:
911
+ # we are doing next-token prediction; shift prediction scores and input ids by one
912
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
913
+ labels = labels[:, 1:].contiguous()
914
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
915
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
916
+ if reduction=='none':
917
+ lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
918
+
919
+ if not return_dict:
920
+ output = (prediction_scores,) + outputs[2:]
921
+ return ((lm_loss,) + output) if lm_loss is not None else output
922
+
923
+ return CausalLMOutputWithCrossAttentions(
924
+ loss=lm_loss,
925
+ logits=prediction_scores,
926
+ past_key_values=outputs.past_key_values,
927
+ hidden_states=outputs.hidden_states,
928
+ attentions=outputs.attentions,
929
+ cross_attentions=outputs.cross_attentions,
930
+ )
931
+
932
+ def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
933
+ input_shape = input_ids.shape
934
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
935
+ if attention_mask is None:
936
+ attention_mask = input_ids.new_ones(input_shape)
937
+
938
+ # cut decoder_input_ids if past is used
939
+ if past is not None:
940
+ input_ids = input_ids[:, -1:]
941
+
942
+ return {
943
+ "input_ids": input_ids,
944
+ "attention_mask": attention_mask,
945
+ "past_key_values": past,
946
+ "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
947
+ "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
948
+ "is_decoder": True,
949
+ }
950
+
951
+ def _reorder_cache(self, past, beam_idx):
952
+ reordered_past = ()
953
+ for layer_past in past:
954
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
955
+ return reordered_past
extras/BLIP/models/nlvr_encoder.py ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import warnings
4
+ from dataclasses import dataclass
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ from torch import Tensor, device, dtype, nn
9
+ import torch.utils.checkpoint
10
+ from torch import nn
11
+ from torch.nn import CrossEntropyLoss
12
+ import torch.nn.functional as F
13
+
14
+ from transformers.activations import ACT2FN
15
+ from transformers.file_utils import (
16
+ ModelOutput,
17
+ )
18
+ from transformers.modeling_outputs import (
19
+ BaseModelOutputWithPastAndCrossAttentions,
20
+ BaseModelOutputWithPoolingAndCrossAttentions,
21
+ CausalLMOutputWithCrossAttentions,
22
+ MaskedLMOutput,
23
+ MultipleChoiceModelOutput,
24
+ NextSentencePredictorOutput,
25
+ QuestionAnsweringModelOutput,
26
+ SequenceClassifierOutput,
27
+ TokenClassifierOutput,
28
+ )
29
+ from transformers.modeling_utils import (
30
+ PreTrainedModel,
31
+ apply_chunking_to_forward,
32
+ find_pruneable_heads_and_indices,
33
+ prune_linear_layer,
34
+ )
35
+ from transformers.utils import logging
36
+ from transformers.models.bert.configuration_bert import BertConfig
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ class BertEmbeddings(nn.Module):
43
+ """Construct the embeddings from word and position embeddings."""
44
+
45
+ def __init__(self, config):
46
+ super().__init__()
47
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
48
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
49
+
50
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
51
+ # any TensorFlow checkpoint file
52
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
53
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
54
+
55
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
56
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
57
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
58
+
59
+ self.config = config
60
+
61
+ def forward(
62
+ self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
63
+ ):
64
+ if input_ids is not None:
65
+ input_shape = input_ids.size()
66
+ else:
67
+ input_shape = inputs_embeds.size()[:-1]
68
+
69
+ seq_length = input_shape[1]
70
+
71
+ if position_ids is None:
72
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
73
+
74
+ if inputs_embeds is None:
75
+ inputs_embeds = self.word_embeddings(input_ids)
76
+
77
+ embeddings = inputs_embeds
78
+
79
+ if self.position_embedding_type == "absolute":
80
+ position_embeddings = self.position_embeddings(position_ids)
81
+ embeddings += position_embeddings
82
+ embeddings = self.LayerNorm(embeddings)
83
+ embeddings = self.dropout(embeddings)
84
+ return embeddings
85
+
86
+
87
+ class BertSelfAttention(nn.Module):
88
+ def __init__(self, config, is_cross_attention):
89
+ super().__init__()
90
+ self.config = config
91
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
92
+ raise ValueError(
93
+ "The hidden size (%d) is not a multiple of the number of attention "
94
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
95
+ )
96
+
97
+ self.num_attention_heads = config.num_attention_heads
98
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
99
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
100
+
101
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
102
+ if is_cross_attention:
103
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
104
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
105
+ else:
106
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
107
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
108
+
109
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
110
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
111
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
112
+ self.max_position_embeddings = config.max_position_embeddings
113
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
114
+ self.save_attention = False
115
+
116
+ def save_attn_gradients(self, attn_gradients):
117
+ self.attn_gradients = attn_gradients
118
+
119
+ def get_attn_gradients(self):
120
+ return self.attn_gradients
121
+
122
+ def save_attention_map(self, attention_map):
123
+ self.attention_map = attention_map
124
+
125
+ def get_attention_map(self):
126
+ return self.attention_map
127
+
128
+ def transpose_for_scores(self, x):
129
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
130
+ x = x.view(*new_x_shape)
131
+ return x.permute(0, 2, 1, 3)
132
+
133
+ def forward(
134
+ self,
135
+ hidden_states,
136
+ attention_mask=None,
137
+ head_mask=None,
138
+ encoder_hidden_states=None,
139
+ encoder_attention_mask=None,
140
+ past_key_value=None,
141
+ output_attentions=False,
142
+ ):
143
+ mixed_query_layer = self.query(hidden_states)
144
+
145
+ # If this is instantiated as a cross-attention module, the keys
146
+ # and values come from an encoder; the attention mask needs to be
147
+ # such that the encoder's padding tokens are not attended to.
148
+ is_cross_attention = encoder_hidden_states is not None
149
+
150
+ if is_cross_attention:
151
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
152
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
153
+ attention_mask = encoder_attention_mask
154
+ elif past_key_value is not None:
155
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
156
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
157
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
158
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
159
+ else:
160
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
161
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
162
+
163
+ query_layer = self.transpose_for_scores(mixed_query_layer)
164
+
165
+ past_key_value = (key_layer, value_layer)
166
+
167
+ # Take the dot product between "query" and "key" to get the raw attention scores.
168
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
169
+
170
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
171
+ seq_length = hidden_states.size()[1]
172
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
173
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
174
+ distance = position_ids_l - position_ids_r
175
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
176
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
177
+
178
+ if self.position_embedding_type == "relative_key":
179
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
180
+ attention_scores = attention_scores + relative_position_scores
181
+ elif self.position_embedding_type == "relative_key_query":
182
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
183
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
184
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
185
+
186
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
187
+ if attention_mask is not None:
188
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
189
+ attention_scores = attention_scores + attention_mask
190
+
191
+ # Normalize the attention scores to probabilities.
192
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
193
+
194
+ if is_cross_attention and self.save_attention:
195
+ self.save_attention_map(attention_probs)
196
+ attention_probs.register_hook(self.save_attn_gradients)
197
+
198
+ # This is actually dropping out entire tokens to attend to, which might
199
+ # seem a bit unusual, but is taken from the original Transformer paper.
200
+ attention_probs_dropped = self.dropout(attention_probs)
201
+
202
+ # Mask heads if we want to
203
+ if head_mask is not None:
204
+ attention_probs_dropped = attention_probs_dropped * head_mask
205
+
206
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
207
+
208
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
209
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
210
+ context_layer = context_layer.view(*new_context_layer_shape)
211
+
212
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
213
+
214
+ outputs = outputs + (past_key_value,)
215
+ return outputs
216
+
217
+
218
+ class BertSelfOutput(nn.Module):
219
+ def __init__(self, config, twin=False, merge=False):
220
+ super().__init__()
221
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
222
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
223
+ if twin:
224
+ self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
225
+ self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
226
+ else:
227
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
228
+ if merge:
229
+ self.act = ACT2FN[config.hidden_act]
230
+ self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
231
+ self.merge = True
232
+ else:
233
+ self.merge = False
234
+
235
+ def forward(self, hidden_states, input_tensor):
236
+ if type(hidden_states) == list:
237
+ hidden_states0 = self.dense0(hidden_states[0])
238
+ hidden_states1 = self.dense1(hidden_states[1])
239
+ if self.merge:
240
+ #hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
241
+ hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1))
242
+ else:
243
+ hidden_states = (hidden_states0+hidden_states1)/2
244
+ else:
245
+ hidden_states = self.dense(hidden_states)
246
+ hidden_states = self.dropout(hidden_states)
247
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
248
+ return hidden_states
249
+
250
+
251
+ class BertAttention(nn.Module):
252
+ def __init__(self, config, is_cross_attention=False, layer_num=-1):
253
+ super().__init__()
254
+ if is_cross_attention:
255
+ self.self0 = BertSelfAttention(config, is_cross_attention)
256
+ self.self1 = BertSelfAttention(config, is_cross_attention)
257
+ else:
258
+ self.self = BertSelfAttention(config, is_cross_attention)
259
+ self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6))
260
+ self.pruned_heads = set()
261
+
262
+ def prune_heads(self, heads):
263
+ if len(heads) == 0:
264
+ return
265
+ heads, index = find_pruneable_heads_and_indices(
266
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
267
+ )
268
+
269
+ # Prune linear layers
270
+ self.self.query = prune_linear_layer(self.self.query, index)
271
+ self.self.key = prune_linear_layer(self.self.key, index)
272
+ self.self.value = prune_linear_layer(self.self.value, index)
273
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
274
+
275
+ # Update hyper params and store pruned heads
276
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
277
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
278
+ self.pruned_heads = self.pruned_heads.union(heads)
279
+
280
+ def forward(
281
+ self,
282
+ hidden_states,
283
+ attention_mask=None,
284
+ head_mask=None,
285
+ encoder_hidden_states=None,
286
+ encoder_attention_mask=None,
287
+ past_key_value=None,
288
+ output_attentions=False,
289
+ ):
290
+ if type(encoder_hidden_states)==list:
291
+ self_outputs0 = self.self0(
292
+ hidden_states,
293
+ attention_mask,
294
+ head_mask,
295
+ encoder_hidden_states[0],
296
+ encoder_attention_mask[0],
297
+ past_key_value,
298
+ output_attentions,
299
+ )
300
+ self_outputs1 = self.self1(
301
+ hidden_states,
302
+ attention_mask,
303
+ head_mask,
304
+ encoder_hidden_states[1],
305
+ encoder_attention_mask[1],
306
+ past_key_value,
307
+ output_attentions,
308
+ )
309
+ attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states)
310
+
311
+ outputs = (attention_output,) + self_outputs0[1:] # add attentions if we output them
312
+ else:
313
+ self_outputs = self.self(
314
+ hidden_states,
315
+ attention_mask,
316
+ head_mask,
317
+ encoder_hidden_states,
318
+ encoder_attention_mask,
319
+ past_key_value,
320
+ output_attentions,
321
+ )
322
+ attention_output = self.output(self_outputs[0], hidden_states)
323
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
324
+ return outputs
325
+
326
+
327
+ class BertIntermediate(nn.Module):
328
+ def __init__(self, config):
329
+ super().__init__()
330
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
331
+ if isinstance(config.hidden_act, str):
332
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
333
+ else:
334
+ self.intermediate_act_fn = config.hidden_act
335
+
336
+ def forward(self, hidden_states):
337
+ hidden_states = self.dense(hidden_states)
338
+ hidden_states = self.intermediate_act_fn(hidden_states)
339
+ return hidden_states
340
+
341
+
342
+ class BertOutput(nn.Module):
343
+ def __init__(self, config):
344
+ super().__init__()
345
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
346
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
347
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
348
+
349
+ def forward(self, hidden_states, input_tensor):
350
+ hidden_states = self.dense(hidden_states)
351
+ hidden_states = self.dropout(hidden_states)
352
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
353
+ return hidden_states
354
+
355
+
356
+ class BertLayer(nn.Module):
357
+ def __init__(self, config, layer_num):
358
+ super().__init__()
359
+ self.config = config
360
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
361
+ self.seq_len_dim = 1
362
+ self.attention = BertAttention(config)
363
+ self.layer_num = layer_num
364
+ if self.config.add_cross_attention:
365
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num)
366
+ self.intermediate = BertIntermediate(config)
367
+ self.output = BertOutput(config)
368
+
369
+ def forward(
370
+ self,
371
+ hidden_states,
372
+ attention_mask=None,
373
+ head_mask=None,
374
+ encoder_hidden_states=None,
375
+ encoder_attention_mask=None,
376
+ past_key_value=None,
377
+ output_attentions=False,
378
+ mode=None,
379
+ ):
380
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
381
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
382
+ self_attention_outputs = self.attention(
383
+ hidden_states,
384
+ attention_mask,
385
+ head_mask,
386
+ output_attentions=output_attentions,
387
+ past_key_value=self_attn_past_key_value,
388
+ )
389
+ attention_output = self_attention_outputs[0]
390
+
391
+ outputs = self_attention_outputs[1:-1]
392
+ present_key_value = self_attention_outputs[-1]
393
+
394
+ if mode=='multimodal':
395
+ assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
396
+ cross_attention_outputs = self.crossattention(
397
+ attention_output,
398
+ attention_mask,
399
+ head_mask,
400
+ encoder_hidden_states,
401
+ encoder_attention_mask,
402
+ output_attentions=output_attentions,
403
+ )
404
+ attention_output = cross_attention_outputs[0]
405
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
406
+ layer_output = apply_chunking_to_forward(
407
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
408
+ )
409
+ outputs = (layer_output,) + outputs
410
+
411
+ outputs = outputs + (present_key_value,)
412
+
413
+ return outputs
414
+
415
+ def feed_forward_chunk(self, attention_output):
416
+ intermediate_output = self.intermediate(attention_output)
417
+ layer_output = self.output(intermediate_output, attention_output)
418
+ return layer_output
419
+
420
+
421
+ class BertEncoder(nn.Module):
422
+ def __init__(self, config):
423
+ super().__init__()
424
+ self.config = config
425
+ self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
426
+ self.gradient_checkpointing = False
427
+
428
+ def forward(
429
+ self,
430
+ hidden_states,
431
+ attention_mask=None,
432
+ head_mask=None,
433
+ encoder_hidden_states=None,
434
+ encoder_attention_mask=None,
435
+ past_key_values=None,
436
+ use_cache=None,
437
+ output_attentions=False,
438
+ output_hidden_states=False,
439
+ return_dict=True,
440
+ mode='multimodal',
441
+ ):
442
+ all_hidden_states = () if output_hidden_states else None
443
+ all_self_attentions = () if output_attentions else None
444
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
445
+
446
+ next_decoder_cache = () if use_cache else None
447
+
448
+ for i in range(self.config.num_hidden_layers):
449
+ layer_module = self.layer[i]
450
+ if output_hidden_states:
451
+ all_hidden_states = all_hidden_states + (hidden_states,)
452
+
453
+ layer_head_mask = head_mask[i] if head_mask is not None else None
454
+ past_key_value = past_key_values[i] if past_key_values is not None else None
455
+
456
+ if self.gradient_checkpointing and self.training:
457
+
458
+ if use_cache:
459
+ logger.warn(
460
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
461
+ )
462
+ use_cache = False
463
+
464
+ def create_custom_forward(module):
465
+ def custom_forward(*inputs):
466
+ return module(*inputs, past_key_value, output_attentions)
467
+
468
+ return custom_forward
469
+
470
+ layer_outputs = torch.utils.checkpoint.checkpoint(
471
+ create_custom_forward(layer_module),
472
+ hidden_states,
473
+ attention_mask,
474
+ layer_head_mask,
475
+ encoder_hidden_states,
476
+ encoder_attention_mask,
477
+ mode=mode,
478
+ )
479
+ else:
480
+ layer_outputs = layer_module(
481
+ hidden_states,
482
+ attention_mask,
483
+ layer_head_mask,
484
+ encoder_hidden_states,
485
+ encoder_attention_mask,
486
+ past_key_value,
487
+ output_attentions,
488
+ mode=mode,
489
+ )
490
+
491
+ hidden_states = layer_outputs[0]
492
+ if use_cache:
493
+ next_decoder_cache += (layer_outputs[-1],)
494
+ if output_attentions:
495
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
496
+
497
+ if output_hidden_states:
498
+ all_hidden_states = all_hidden_states + (hidden_states,)
499
+
500
+ if not return_dict:
501
+ return tuple(
502
+ v
503
+ for v in [
504
+ hidden_states,
505
+ next_decoder_cache,
506
+ all_hidden_states,
507
+ all_self_attentions,
508
+ all_cross_attentions,
509
+ ]
510
+ if v is not None
511
+ )
512
+ return BaseModelOutputWithPastAndCrossAttentions(
513
+ last_hidden_state=hidden_states,
514
+ past_key_values=next_decoder_cache,
515
+ hidden_states=all_hidden_states,
516
+ attentions=all_self_attentions,
517
+ cross_attentions=all_cross_attentions,
518
+ )
519
+
520
+
521
+ class BertPooler(nn.Module):
522
+ def __init__(self, config):
523
+ super().__init__()
524
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
525
+ self.activation = nn.Tanh()
526
+
527
+ def forward(self, hidden_states):
528
+ # We "pool" the model by simply taking the hidden state corresponding
529
+ # to the first token.
530
+ first_token_tensor = hidden_states[:, 0]
531
+ pooled_output = self.dense(first_token_tensor)
532
+ pooled_output = self.activation(pooled_output)
533
+ return pooled_output
534
+
535
+
536
+ class BertPredictionHeadTransform(nn.Module):
537
+ def __init__(self, config):
538
+ super().__init__()
539
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
540
+ if isinstance(config.hidden_act, str):
541
+ self.transform_act_fn = ACT2FN[config.hidden_act]
542
+ else:
543
+ self.transform_act_fn = config.hidden_act
544
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
545
+
546
+ def forward(self, hidden_states):
547
+ hidden_states = self.dense(hidden_states)
548
+ hidden_states = self.transform_act_fn(hidden_states)
549
+ hidden_states = self.LayerNorm(hidden_states)
550
+ return hidden_states
551
+
552
+
553
+ class BertLMPredictionHead(nn.Module):
554
+ def __init__(self, config):
555
+ super().__init__()
556
+ self.transform = BertPredictionHeadTransform(config)
557
+
558
+ # The output weights are the same as the input embeddings, but there is
559
+ # an output-only bias for each token.
560
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
561
+
562
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
563
+
564
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
565
+ self.decoder.bias = self.bias
566
+
567
+ def forward(self, hidden_states):
568
+ hidden_states = self.transform(hidden_states)
569
+ hidden_states = self.decoder(hidden_states)
570
+ return hidden_states
571
+
572
+
573
+ class BertOnlyMLMHead(nn.Module):
574
+ def __init__(self, config):
575
+ super().__init__()
576
+ self.predictions = BertLMPredictionHead(config)
577
+
578
+ def forward(self, sequence_output):
579
+ prediction_scores = self.predictions(sequence_output)
580
+ return prediction_scores
581
+
582
+
583
+ class BertPreTrainedModel(PreTrainedModel):
584
+ """
585
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
586
+ models.
587
+ """
588
+
589
+ config_class = BertConfig
590
+ base_model_prefix = "bert"
591
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
592
+
593
+ def _init_weights(self, module):
594
+ """ Initialize the weights """
595
+ if isinstance(module, (nn.Linear, nn.Embedding)):
596
+ # Slightly different from the TF version which uses truncated_normal for initialization
597
+ # cf https://github.com/pytorch/pytorch/pull/5617
598
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
599
+ elif isinstance(module, nn.LayerNorm):
600
+ module.bias.data.zero_()
601
+ module.weight.data.fill_(1.0)
602
+ if isinstance(module, nn.Linear) and module.bias is not None:
603
+ module.bias.data.zero_()
604
+
605
+
606
+ class BertModel(BertPreTrainedModel):
607
+ """
608
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
609
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
610
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
611
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
612
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
613
+ input to the forward pass.
614
+ """
615
+
616
+ def __init__(self, config, add_pooling_layer=True):
617
+ super().__init__(config)
618
+ self.config = config
619
+
620
+ self.embeddings = BertEmbeddings(config)
621
+
622
+ self.encoder = BertEncoder(config)
623
+
624
+ self.pooler = BertPooler(config) if add_pooling_layer else None
625
+
626
+ self.init_weights()
627
+
628
+
629
+ def get_input_embeddings(self):
630
+ return self.embeddings.word_embeddings
631
+
632
+ def set_input_embeddings(self, value):
633
+ self.embeddings.word_embeddings = value
634
+
635
+ def _prune_heads(self, heads_to_prune):
636
+ """
637
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
638
+ class PreTrainedModel
639
+ """
640
+ for layer, heads in heads_to_prune.items():
641
+ self.encoder.layer[layer].attention.prune_heads(heads)
642
+
643
+
644
+ def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
645
+ """
646
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
647
+
648
+ Arguments:
649
+ attention_mask (:obj:`torch.Tensor`):
650
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
651
+ input_shape (:obj:`Tuple[int]`):
652
+ The shape of the input to the model.
653
+ device: (:obj:`torch.device`):
654
+ The device of the input to the model.
655
+
656
+ Returns:
657
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
658
+ """
659
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
660
+ # ourselves in which case we just need to make it broadcastable to all heads.
661
+ if attention_mask.dim() == 3:
662
+ extended_attention_mask = attention_mask[:, None, :, :]
663
+ elif attention_mask.dim() == 2:
664
+ # Provided a padding mask of dimensions [batch_size, seq_length]
665
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
666
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
667
+ if is_decoder:
668
+ batch_size, seq_length = input_shape
669
+
670
+ seq_ids = torch.arange(seq_length, device=device)
671
+ causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
672
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
673
+ # causal and attention masks must have same type with pytorch version < 1.3
674
+ causal_mask = causal_mask.to(attention_mask.dtype)
675
+
676
+ if causal_mask.shape[1] < attention_mask.shape[1]:
677
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
678
+ causal_mask = torch.cat(
679
+ [
680
+ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
681
+ causal_mask,
682
+ ],
683
+ axis=-1,
684
+ )
685
+
686
+ extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
687
+ else:
688
+ extended_attention_mask = attention_mask[:, None, None, :]
689
+ else:
690
+ raise ValueError(
691
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
692
+ input_shape, attention_mask.shape
693
+ )
694
+ )
695
+
696
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
697
+ # masked positions, this operation will create a tensor which is 0.0 for
698
+ # positions we want to attend and -10000.0 for masked positions.
699
+ # Since we are adding it to the raw scores before the softmax, this is
700
+ # effectively the same as removing these entirely.
701
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
702
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
703
+ return extended_attention_mask
704
+
705
+ def forward(
706
+ self,
707
+ input_ids=None,
708
+ attention_mask=None,
709
+ position_ids=None,
710
+ head_mask=None,
711
+ inputs_embeds=None,
712
+ encoder_embeds=None,
713
+ encoder_hidden_states=None,
714
+ encoder_attention_mask=None,
715
+ past_key_values=None,
716
+ use_cache=None,
717
+ output_attentions=None,
718
+ output_hidden_states=None,
719
+ return_dict=None,
720
+ is_decoder=False,
721
+ mode='multimodal',
722
+ ):
723
+ r"""
724
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
725
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
726
+ the model is configured as a decoder.
727
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
728
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
729
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
730
+ - 1 for tokens that are **not masked**,
731
+ - 0 for tokens that are **masked**.
732
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
733
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
734
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
735
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
736
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
737
+ use_cache (:obj:`bool`, `optional`):
738
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
739
+ decoding (see :obj:`past_key_values`).
740
+ """
741
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
742
+ output_hidden_states = (
743
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
744
+ )
745
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
746
+
747
+ if is_decoder:
748
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
749
+ else:
750
+ use_cache = False
751
+
752
+ if input_ids is not None and inputs_embeds is not None:
753
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
754
+ elif input_ids is not None:
755
+ input_shape = input_ids.size()
756
+ batch_size, seq_length = input_shape
757
+ device = input_ids.device
758
+ elif inputs_embeds is not None:
759
+ input_shape = inputs_embeds.size()[:-1]
760
+ batch_size, seq_length = input_shape
761
+ device = inputs_embeds.device
762
+ elif encoder_embeds is not None:
763
+ input_shape = encoder_embeds.size()[:-1]
764
+ batch_size, seq_length = input_shape
765
+ device = encoder_embeds.device
766
+ else:
767
+ raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
768
+
769
+ # past_key_values_length
770
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
771
+
772
+ if attention_mask is None:
773
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
774
+
775
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
776
+ # ourselves in which case we just need to make it broadcastable to all heads.
777
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
778
+ device, is_decoder)
779
+
780
+ # If a 2D or 3D attention mask is provided for the cross-attention
781
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
782
+ if encoder_hidden_states is not None:
783
+ if type(encoder_hidden_states) == list:
784
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
785
+ else:
786
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
787
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
788
+
789
+ if type(encoder_attention_mask) == list:
790
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
791
+ elif encoder_attention_mask is None:
792
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
793
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
794
+ else:
795
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
796
+ else:
797
+ encoder_extended_attention_mask = None
798
+
799
+ # Prepare head mask if needed
800
+ # 1.0 in head_mask indicate we keep the head
801
+ # attention_probs has shape bsz x n_heads x N x N
802
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
803
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
804
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
805
+
806
+ if encoder_embeds is None:
807
+ embedding_output = self.embeddings(
808
+ input_ids=input_ids,
809
+ position_ids=position_ids,
810
+ inputs_embeds=inputs_embeds,
811
+ past_key_values_length=past_key_values_length,
812
+ )
813
+ else:
814
+ embedding_output = encoder_embeds
815
+
816
+ encoder_outputs = self.encoder(
817
+ embedding_output,
818
+ attention_mask=extended_attention_mask,
819
+ head_mask=head_mask,
820
+ encoder_hidden_states=encoder_hidden_states,
821
+ encoder_attention_mask=encoder_extended_attention_mask,
822
+ past_key_values=past_key_values,
823
+ use_cache=use_cache,
824
+ output_attentions=output_attentions,
825
+ output_hidden_states=output_hidden_states,
826
+ return_dict=return_dict,
827
+ mode=mode,
828
+ )
829
+ sequence_output = encoder_outputs[0]
830
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
831
+
832
+ if not return_dict:
833
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
834
+
835
+ return BaseModelOutputWithPoolingAndCrossAttentions(
836
+ last_hidden_state=sequence_output,
837
+ pooler_output=pooled_output,
838
+ past_key_values=encoder_outputs.past_key_values,
839
+ hidden_states=encoder_outputs.hidden_states,
840
+ attentions=encoder_outputs.attentions,
841
+ cross_attentions=encoder_outputs.cross_attentions,
842
+ )
843
+
extras/BLIP/models/vit.py ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on timm code base
8
+ * https://github.com/rwightman/pytorch-image-models/tree/master/timm
9
+ '''
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from functools import partial
15
+
16
+ from timm.models.vision_transformer import _cfg, PatchEmbed
17
+ from timm.models.registry import register_model
18
+ from timm.models.layers import trunc_normal_, DropPath
19
+ from timm.models.helpers import named_apply, adapt_input_conv
20
+
21
+
22
+ def checkpoint_wrapper(x):
23
+ return x
24
+
25
+
26
+ class Mlp(nn.Module):
27
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks
28
+ """
29
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
30
+ super().__init__()
31
+ out_features = out_features or in_features
32
+ hidden_features = hidden_features or in_features
33
+ self.fc1 = nn.Linear(in_features, hidden_features)
34
+ self.act = act_layer()
35
+ self.fc2 = nn.Linear(hidden_features, out_features)
36
+ self.drop = nn.Dropout(drop)
37
+
38
+ def forward(self, x):
39
+ x = self.fc1(x)
40
+ x = self.act(x)
41
+ x = self.drop(x)
42
+ x = self.fc2(x)
43
+ x = self.drop(x)
44
+ return x
45
+
46
+
47
+ class Attention(nn.Module):
48
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
49
+ super().__init__()
50
+ self.num_heads = num_heads
51
+ head_dim = dim // num_heads
52
+ # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
53
+ self.scale = qk_scale or head_dim ** -0.5
54
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
55
+ self.attn_drop = nn.Dropout(attn_drop)
56
+ self.proj = nn.Linear(dim, dim)
57
+ self.proj_drop = nn.Dropout(proj_drop)
58
+ self.attn_gradients = None
59
+ self.attention_map = None
60
+
61
+ def save_attn_gradients(self, attn_gradients):
62
+ self.attn_gradients = attn_gradients
63
+
64
+ def get_attn_gradients(self):
65
+ return self.attn_gradients
66
+
67
+ def save_attention_map(self, attention_map):
68
+ self.attention_map = attention_map
69
+
70
+ def get_attention_map(self):
71
+ return self.attention_map
72
+
73
+ def forward(self, x, register_hook=False):
74
+ B, N, C = x.shape
75
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
76
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
77
+
78
+ attn = (q @ k.transpose(-2, -1)) * self.scale
79
+ attn = attn.softmax(dim=-1)
80
+ attn = self.attn_drop(attn)
81
+
82
+ if register_hook:
83
+ self.save_attention_map(attn)
84
+ attn.register_hook(self.save_attn_gradients)
85
+
86
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
87
+ x = self.proj(x)
88
+ x = self.proj_drop(x)
89
+ return x
90
+
91
+
92
+ class Block(nn.Module):
93
+
94
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
95
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
96
+ super().__init__()
97
+ self.norm1 = norm_layer(dim)
98
+ self.attn = Attention(
99
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
100
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
101
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
102
+ self.norm2 = norm_layer(dim)
103
+ mlp_hidden_dim = int(dim * mlp_ratio)
104
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
105
+
106
+ if use_grad_checkpointing:
107
+ self.attn = checkpoint_wrapper(self.attn)
108
+ self.mlp = checkpoint_wrapper(self.mlp)
109
+
110
+ def forward(self, x, register_hook=False):
111
+ x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
112
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
113
+ return x
114
+
115
+
116
+ class VisionTransformer(nn.Module):
117
+ """ Vision Transformer
118
+ A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
119
+ https://arxiv.org/abs/2010.11929
120
+ """
121
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
122
+ num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
123
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
124
+ use_grad_checkpointing=False, ckpt_layer=0):
125
+ """
126
+ Args:
127
+ img_size (int, tuple): input image size
128
+ patch_size (int, tuple): patch size
129
+ in_chans (int): number of input channels
130
+ num_classes (int): number of classes for classification head
131
+ embed_dim (int): embedding dimension
132
+ depth (int): depth of transformer
133
+ num_heads (int): number of attention heads
134
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
135
+ qkv_bias (bool): enable bias for qkv if True
136
+ qk_scale (float): override default qk scale of head_dim ** -0.5 if set
137
+ representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
138
+ drop_rate (float): dropout rate
139
+ attn_drop_rate (float): attention dropout rate
140
+ drop_path_rate (float): stochastic depth rate
141
+ norm_layer: (nn.Module): normalization layer
142
+ """
143
+ super().__init__()
144
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
145
+ norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
146
+
147
+ self.patch_embed = PatchEmbed(
148
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
149
+
150
+ num_patches = self.patch_embed.num_patches
151
+
152
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
153
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
154
+ self.pos_drop = nn.Dropout(p=drop_rate)
155
+
156
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
157
+ self.blocks = nn.ModuleList([
158
+ Block(
159
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
160
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
161
+ use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
162
+ )
163
+ for i in range(depth)])
164
+ self.norm = norm_layer(embed_dim)
165
+
166
+ trunc_normal_(self.pos_embed, std=.02)
167
+ trunc_normal_(self.cls_token, std=.02)
168
+ self.apply(self._init_weights)
169
+
170
+ def _init_weights(self, m):
171
+ if isinstance(m, nn.Linear):
172
+ trunc_normal_(m.weight, std=.02)
173
+ if isinstance(m, nn.Linear) and m.bias is not None:
174
+ nn.init.constant_(m.bias, 0)
175
+ elif isinstance(m, nn.LayerNorm):
176
+ nn.init.constant_(m.bias, 0)
177
+ nn.init.constant_(m.weight, 1.0)
178
+
179
+ @torch.jit.ignore
180
+ def no_weight_decay(self):
181
+ return {'pos_embed', 'cls_token'}
182
+
183
+ def forward(self, x, register_blk=-1):
184
+ B = x.shape[0]
185
+ x = self.patch_embed(x)
186
+
187
+ cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
188
+ x = torch.cat((cls_tokens, x), dim=1)
189
+
190
+ x = x + self.pos_embed[:,:x.size(1),:]
191
+ x = self.pos_drop(x)
192
+
193
+ for i,blk in enumerate(self.blocks):
194
+ x = blk(x, register_blk==i)
195
+ x = self.norm(x)
196
+
197
+ return x
198
+
199
+ @torch.jit.ignore()
200
+ def load_pretrained(self, checkpoint_path, prefix=''):
201
+ _load_weights(self, checkpoint_path, prefix)
202
+
203
+
204
+ @torch.no_grad()
205
+ def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
206
+ """ Load weights from .npz checkpoints for official Google Brain Flax implementation
207
+ """
208
+ import numpy as np
209
+
210
+ def _n2p(w, t=True):
211
+ if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
212
+ w = w.flatten()
213
+ if t:
214
+ if w.ndim == 4:
215
+ w = w.transpose([3, 2, 0, 1])
216
+ elif w.ndim == 3:
217
+ w = w.transpose([2, 0, 1])
218
+ elif w.ndim == 2:
219
+ w = w.transpose([1, 0])
220
+ return torch.from_numpy(w)
221
+
222
+ w = np.load(checkpoint_path)
223
+ if not prefix and 'opt/target/embedding/kernel' in w:
224
+ prefix = 'opt/target/'
225
+
226
+ if hasattr(model.patch_embed, 'backbone'):
227
+ # hybrid
228
+ backbone = model.patch_embed.backbone
229
+ stem_only = not hasattr(backbone, 'stem')
230
+ stem = backbone if stem_only else backbone.stem
231
+ stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
232
+ stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
233
+ stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
234
+ if not stem_only:
235
+ for i, stage in enumerate(backbone.stages):
236
+ for j, block in enumerate(stage.blocks):
237
+ bp = f'{prefix}block{i + 1}/unit{j + 1}/'
238
+ for r in range(3):
239
+ getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
240
+ getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
241
+ getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
242
+ if block.downsample is not None:
243
+ block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
244
+ block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
245
+ block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
246
+ embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
247
+ else:
248
+ embed_conv_w = adapt_input_conv(
249
+ model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
250
+ model.patch_embed.proj.weight.copy_(embed_conv_w)
251
+ model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
252
+ model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
253
+ pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
254
+ if pos_embed_w.shape != model.pos_embed.shape:
255
+ pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
256
+ pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
257
+ model.pos_embed.copy_(pos_embed_w)
258
+ model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
259
+ model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
260
+ # if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
261
+ # model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
262
+ # model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
263
+ # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
264
+ # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
265
+ # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
266
+ for i, block in enumerate(model.blocks.children()):
267
+ block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
268
+ mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
269
+ block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
270
+ block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
271
+ block.attn.qkv.weight.copy_(torch.cat([
272
+ _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
273
+ block.attn.qkv.bias.copy_(torch.cat([
274
+ _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
275
+ block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
276
+ block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
277
+ for r in range(2):
278
+ getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
279
+ getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
280
+ block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
281
+ block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
282
+
283
+
284
+ def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
285
+ # interpolate position embedding
286
+ embedding_size = pos_embed_checkpoint.shape[-1]
287
+ num_patches = visual_encoder.patch_embed.num_patches
288
+ num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
289
+ # height (== width) for the checkpoint position embedding
290
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
291
+ # height (== width) for the new position embedding
292
+ new_size = int(num_patches ** 0.5)
293
+
294
+ if orig_size!=new_size:
295
+ # class_token and dist_token are kept unchanged
296
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
297
+ # only the position tokens are interpolated
298
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
299
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
300
+ pos_tokens = torch.nn.functional.interpolate(
301
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
302
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
303
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
304
+ print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
305
+
306
+ return new_pos_embed
307
+ else:
308
+ return pos_embed_checkpoint
extras/expansion.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fooocus GPT2 Expansion
2
+ # Algorithm created by Lvmin Zhang at 2023, Stanford
3
+ # If used inside Fooocus, any use is permitted.
4
+ # If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
5
+ # This applies to the word list, vocab, model, and algorithm.
6
+
7
+
8
+ import os
9
+ import torch
10
+ import math
11
+ import ldm_patched.modules.model_management as model_management
12
+
13
+ from transformers.generation.logits_process import LogitsProcessorList
14
+ from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
15
+ from modules.config import path_fooocus_expansion
16
+ from ldm_patched.modules.model_patcher import ModelPatcher
17
+
18
+
19
+ # limitation of np.random.seed(), called from transformers.set_seed()
20
+ SEED_LIMIT_NUMPY = 2**32
21
+ neg_inf = - 8192.0
22
+
23
+
24
+ def safe_str(x):
25
+ x = str(x)
26
+ for _ in range(16):
27
+ x = x.replace(' ', ' ')
28
+ return x.strip(",. \r\n")
29
+
30
+
31
+ def remove_pattern(x, pattern):
32
+ for p in pattern:
33
+ x = x.replace(p, '')
34
+ return x
35
+
36
+
37
+ class FooocusExpansion:
38
+ def __init__(self):
39
+ self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
40
+
41
+ positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
42
+ encoding='utf-8').read().splitlines()
43
+ positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
44
+
45
+ self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
46
+
47
+ debug_list = []
48
+ for k, v in self.tokenizer.vocab.items():
49
+ if k in positive_words:
50
+ self.logits_bias[0, v] = 0
51
+ debug_list.append(k[1:])
52
+
53
+ print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
54
+
55
+ # debug_list = '\n'.join(sorted(debug_list))
56
+ # print(debug_list)
57
+
58
+ # t11 = self.tokenizer(',', return_tensors="np")
59
+ # t198 = self.tokenizer('\n', return_tensors="np")
60
+ # eos = self.tokenizer.eos_token_id
61
+
62
+ self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
63
+ self.model.eval()
64
+
65
+ load_device = model_management.text_encoder_device()
66
+ offload_device = model_management.text_encoder_offload_device()
67
+
68
+ # MPS hack
69
+ if model_management.is_device_mps(load_device):
70
+ load_device = torch.device('cpu')
71
+ offload_device = torch.device('cpu')
72
+
73
+ use_fp16 = model_management.should_use_fp16(device=load_device)
74
+
75
+ if use_fp16:
76
+ self.model.half()
77
+
78
+ self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
79
+ print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
80
+
81
+ @torch.no_grad()
82
+ @torch.inference_mode()
83
+ def logits_processor(self, input_ids, scores):
84
+ assert scores.ndim == 2 and scores.shape[0] == 1
85
+ self.logits_bias = self.logits_bias.to(scores)
86
+
87
+ bias = self.logits_bias.clone()
88
+ bias[0, input_ids[0].to(bias.device).long()] = neg_inf
89
+ bias[0, 11] = 0
90
+
91
+ return scores + bias
92
+
93
+ @torch.no_grad()
94
+ @torch.inference_mode()
95
+ def __call__(self, prompt, seed):
96
+ if prompt == '':
97
+ return ''
98
+
99
+ if self.patcher.current_device != self.patcher.load_device:
100
+ print('Fooocus Expansion loaded by itself.')
101
+ model_management.load_model_gpu(self.patcher)
102
+
103
+ seed = int(seed) % SEED_LIMIT_NUMPY
104
+ set_seed(seed)
105
+ prompt = safe_str(prompt) + ','
106
+
107
+ tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
108
+ tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
109
+ tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
110
+
111
+ current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
112
+ max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
113
+ max_new_tokens = max_token_length - current_token_length
114
+
115
+ if max_new_tokens == 0:
116
+ return prompt[:-1]
117
+
118
+ # https://huggingface.co/blog/introducing-csearch
119
+ # https://huggingface.co/docs/transformers/generation_strategies
120
+ features = self.model.generate(**tokenized_kwargs,
121
+ top_k=100,
122
+ max_new_tokens=max_new_tokens,
123
+ do_sample=True,
124
+ logits_processor=LogitsProcessorList([self.logits_processor]))
125
+
126
+ response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
127
+ result = safe_str(response[0])
128
+
129
+ return result
extras/face_crop.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import modules.config
4
+
5
+
6
+ faceRestoreHelper = None
7
+
8
+
9
+ def align_warp_face(self, landmark, border_mode='constant'):
10
+ affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
11
+ self.affine_matrices.append(affine_matrix)
12
+ if border_mode == 'constant':
13
+ border_mode = cv2.BORDER_CONSTANT
14
+ elif border_mode == 'reflect101':
15
+ border_mode = cv2.BORDER_REFLECT101
16
+ elif border_mode == 'reflect':
17
+ border_mode = cv2.BORDER_REFLECT
18
+ input_img = self.input_img
19
+ cropped_face = cv2.warpAffine(input_img, affine_matrix, self.face_size,
20
+ borderMode=border_mode, borderValue=(135, 133, 132))
21
+ return cropped_face
22
+
23
+
24
+ def crop_image(img_rgb):
25
+ global faceRestoreHelper
26
+
27
+ if faceRestoreHelper is None:
28
+ from extras.facexlib.utils.face_restoration_helper import FaceRestoreHelper
29
+ faceRestoreHelper = FaceRestoreHelper(
30
+ upscale_factor=1,
31
+ model_rootpath=modules.config.path_controlnet,
32
+ device='cpu' # use cpu is safer since we are out of memory management
33
+ )
34
+
35
+ faceRestoreHelper.clean_all()
36
+ faceRestoreHelper.read_image(np.ascontiguousarray(img_rgb[:, :, ::-1].copy()))
37
+ faceRestoreHelper.get_face_landmarks_5()
38
+
39
+ landmarks = faceRestoreHelper.all_landmarks_5
40
+ # landmarks are already sorted with confidence.
41
+
42
+ if len(landmarks) == 0:
43
+ print('No face detected')
44
+ return img_rgb
45
+ else:
46
+ print(f'Detected {len(landmarks)} faces')
47
+
48
+ result = align_warp_face(faceRestoreHelper, landmarks[0])
49
+
50
+ return np.ascontiguousarray(result[:, :, ::-1].copy())
extras/facexlib/detection/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from copy import deepcopy
3
+
4
+ from extras.facexlib.utils import load_file_from_url
5
+ from .retinaface import RetinaFace
6
+
7
+
8
+ def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None):
9
+ if model_name == 'retinaface_resnet50':
10
+ model = RetinaFace(network_name='resnet50', half=half, device=device)
11
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
12
+ elif model_name == 'retinaface_mobile0.25':
13
+ model = RetinaFace(network_name='mobile0.25', half=half, device=device)
14
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
15
+ else:
16
+ raise NotImplementedError(f'{model_name} is not implemented.')
17
+
18
+ model_path = load_file_from_url(
19
+ url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
20
+
21
+ # TODO: clean pretrained model
22
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
23
+ # remove unnecessary 'module.'
24
+ for k, v in deepcopy(load_net).items():
25
+ if k.startswith('module.'):
26
+ load_net[k[7:]] = v
27
+ load_net.pop(k)
28
+ model.load_state_dict(load_net, strict=True)
29
+ model.eval()
30
+ model = model.to(device)
31
+ return model
extras/facexlib/detection/align_trans.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ from .matlab_cp2tform import get_similarity_transform_for_cv2
5
+
6
+ # reference facial points, a list of coordinates (x,y)
7
+ REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
8
+ [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
9
+
10
+ DEFAULT_CROP_SIZE = (96, 112)
11
+
12
+
13
+ class FaceWarpException(Exception):
14
+
15
+ def __str__(self):
16
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
17
+
18
+
19
+ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
20
+ """
21
+ Function:
22
+ ----------
23
+ get reference 5 key points according to crop settings:
24
+ 0. Set default crop_size:
25
+ if default_square:
26
+ crop_size = (112, 112)
27
+ else:
28
+ crop_size = (96, 112)
29
+ 1. Pad the crop_size by inner_padding_factor in each side;
30
+ 2. Resize crop_size into (output_size - outer_padding*2),
31
+ pad into output_size with outer_padding;
32
+ 3. Output reference_5point;
33
+ Parameters:
34
+ ----------
35
+ @output_size: (w, h) or None
36
+ size of aligned face image
37
+ @inner_padding_factor: (w_factor, h_factor)
38
+ padding factor for inner (w, h)
39
+ @outer_padding: (w_pad, h_pad)
40
+ each row is a pair of coordinates (x, y)
41
+ @default_square: True or False
42
+ if True:
43
+ default crop_size = (112, 112)
44
+ else:
45
+ default crop_size = (96, 112);
46
+ !!! make sure, if output_size is not None:
47
+ (output_size - outer_padding)
48
+ = some_scale * (default crop_size * (1.0 +
49
+ inner_padding_factor))
50
+ Returns:
51
+ ----------
52
+ @reference_5point: 5x2 np.array
53
+ each row is a pair of transformed coordinates (x, y)
54
+ """
55
+
56
+ tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
57
+ tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
58
+
59
+ # 0) make the inner region a square
60
+ if default_square:
61
+ size_diff = max(tmp_crop_size) - tmp_crop_size
62
+ tmp_5pts += size_diff / 2
63
+ tmp_crop_size += size_diff
64
+
65
+ if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
66
+
67
+ return tmp_5pts
68
+
69
+ if (inner_padding_factor == 0 and outer_padding == (0, 0)):
70
+ if output_size is None:
71
+ return tmp_5pts
72
+ else:
73
+ raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
74
+
75
+ # check output size
76
+ if not (0 <= inner_padding_factor <= 1.0):
77
+ raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
78
+
79
+ if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
80
+ output_size = tmp_crop_size * \
81
+ (1 + inner_padding_factor * 2).astype(np.int32)
82
+ output_size += np.array(outer_padding)
83
+ if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
84
+ raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
85
+
86
+ # 1) pad the inner region according inner_padding_factor
87
+ if inner_padding_factor > 0:
88
+ size_diff = tmp_crop_size * inner_padding_factor * 2
89
+ tmp_5pts += size_diff / 2
90
+ tmp_crop_size += np.round(size_diff).astype(np.int32)
91
+
92
+ # 2) resize the padded inner region
93
+ size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
94
+
95
+ if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
96
+ raise FaceWarpException('Must have (output_size - outer_padding)'
97
+ '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
98
+
99
+ scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
100
+ tmp_5pts = tmp_5pts * scale_factor
101
+ # size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
102
+ # tmp_5pts = tmp_5pts + size_diff / 2
103
+ tmp_crop_size = size_bf_outer_pad
104
+
105
+ # 3) add outer_padding to make output_size
106
+ reference_5point = tmp_5pts + np.array(outer_padding)
107
+ tmp_crop_size = output_size
108
+
109
+ return reference_5point
110
+
111
+
112
+ def get_affine_transform_matrix(src_pts, dst_pts):
113
+ """
114
+ Function:
115
+ ----------
116
+ get affine transform matrix 'tfm' from src_pts to dst_pts
117
+ Parameters:
118
+ ----------
119
+ @src_pts: Kx2 np.array
120
+ source points matrix, each row is a pair of coordinates (x, y)
121
+ @dst_pts: Kx2 np.array
122
+ destination points matrix, each row is a pair of coordinates (x, y)
123
+ Returns:
124
+ ----------
125
+ @tfm: 2x3 np.array
126
+ transform matrix from src_pts to dst_pts
127
+ """
128
+
129
+ tfm = np.float32([[1, 0, 0], [0, 1, 0]])
130
+ n_pts = src_pts.shape[0]
131
+ ones = np.ones((n_pts, 1), src_pts.dtype)
132
+ src_pts_ = np.hstack([src_pts, ones])
133
+ dst_pts_ = np.hstack([dst_pts, ones])
134
+
135
+ A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
136
+
137
+ if rank == 3:
138
+ tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
139
+ elif rank == 2:
140
+ tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
141
+
142
+ return tfm
143
+
144
+
145
+ def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
146
+ """
147
+ Function:
148
+ ----------
149
+ apply affine transform 'trans' to uv
150
+ Parameters:
151
+ ----------
152
+ @src_img: 3x3 np.array
153
+ input image
154
+ @facial_pts: could be
155
+ 1)a list of K coordinates (x,y)
156
+ or
157
+ 2) Kx2 or 2xK np.array
158
+ each row or col is a pair of coordinates (x, y)
159
+ @reference_pts: could be
160
+ 1) a list of K coordinates (x,y)
161
+ or
162
+ 2) Kx2 or 2xK np.array
163
+ each row or col is a pair of coordinates (x, y)
164
+ or
165
+ 3) None
166
+ if None, use default reference facial points
167
+ @crop_size: (w, h)
168
+ output face image size
169
+ @align_type: transform type, could be one of
170
+ 1) 'similarity': use similarity transform
171
+ 2) 'cv2_affine': use the first 3 points to do affine transform,
172
+ by calling cv2.getAffineTransform()
173
+ 3) 'affine': use all points to do affine transform
174
+ Returns:
175
+ ----------
176
+ @face_img: output face image with size (w, h) = @crop_size
177
+ """
178
+
179
+ if reference_pts is None:
180
+ if crop_size[0] == 96 and crop_size[1] == 112:
181
+ reference_pts = REFERENCE_FACIAL_POINTS
182
+ else:
183
+ default_square = False
184
+ inner_padding_factor = 0
185
+ outer_padding = (0, 0)
186
+ output_size = crop_size
187
+
188
+ reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
189
+ default_square)
190
+
191
+ ref_pts = np.float32(reference_pts)
192
+ ref_pts_shp = ref_pts.shape
193
+ if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
194
+ raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
195
+
196
+ if ref_pts_shp[0] == 2:
197
+ ref_pts = ref_pts.T
198
+
199
+ src_pts = np.float32(facial_pts)
200
+ src_pts_shp = src_pts.shape
201
+ if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
202
+ raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
203
+
204
+ if src_pts_shp[0] == 2:
205
+ src_pts = src_pts.T
206
+
207
+ if src_pts.shape != ref_pts.shape:
208
+ raise FaceWarpException('facial_pts and reference_pts must have the same shape')
209
+
210
+ if align_type == 'cv2_affine':
211
+ tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
212
+ elif align_type == 'affine':
213
+ tfm = get_affine_transform_matrix(src_pts, ref_pts)
214
+ else:
215
+ tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
216
+
217
+ face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
218
+
219
+ return face_img
extras/facexlib/detection/matlab_cp2tform.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.linalg import inv, lstsq
3
+ from numpy.linalg import matrix_rank as rank
4
+ from numpy.linalg import norm
5
+
6
+
7
+ class MatlabCp2tormException(Exception):
8
+
9
+ def __str__(self):
10
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
11
+
12
+
13
+ def tformfwd(trans, uv):
14
+ """
15
+ Function:
16
+ ----------
17
+ apply affine transform 'trans' to uv
18
+
19
+ Parameters:
20
+ ----------
21
+ @trans: 3x3 np.array
22
+ transform matrix
23
+ @uv: Kx2 np.array
24
+ each row is a pair of coordinates (x, y)
25
+
26
+ Returns:
27
+ ----------
28
+ @xy: Kx2 np.array
29
+ each row is a pair of transformed coordinates (x, y)
30
+ """
31
+ uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
32
+ xy = np.dot(uv, trans)
33
+ xy = xy[:, 0:-1]
34
+ return xy
35
+
36
+
37
+ def tforminv(trans, uv):
38
+ """
39
+ Function:
40
+ ----------
41
+ apply the inverse of affine transform 'trans' to uv
42
+
43
+ Parameters:
44
+ ----------
45
+ @trans: 3x3 np.array
46
+ transform matrix
47
+ @uv: Kx2 np.array
48
+ each row is a pair of coordinates (x, y)
49
+
50
+ Returns:
51
+ ----------
52
+ @xy: Kx2 np.array
53
+ each row is a pair of inverse-transformed coordinates (x, y)
54
+ """
55
+ Tinv = inv(trans)
56
+ xy = tformfwd(Tinv, uv)
57
+ return xy
58
+
59
+
60
+ def findNonreflectiveSimilarity(uv, xy, options=None):
61
+ options = {'K': 2}
62
+
63
+ K = options['K']
64
+ M = xy.shape[0]
65
+ x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
66
+ y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
67
+
68
+ tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
69
+ tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
70
+ X = np.vstack((tmp1, tmp2))
71
+
72
+ u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
73
+ v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
74
+ U = np.vstack((u, v))
75
+
76
+ # We know that X * r = U
77
+ if rank(X) >= 2 * K:
78
+ r, _, _, _ = lstsq(X, U, rcond=-1)
79
+ r = np.squeeze(r)
80
+ else:
81
+ raise Exception('cp2tform:twoUniquePointsReq')
82
+ sc = r[0]
83
+ ss = r[1]
84
+ tx = r[2]
85
+ ty = r[3]
86
+
87
+ Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
88
+ T = inv(Tinv)
89
+ T[:, 2] = np.array([0, 0, 1])
90
+
91
+ return T, Tinv
92
+
93
+
94
+ def findSimilarity(uv, xy, options=None):
95
+ options = {'K': 2}
96
+
97
+ # uv = np.array(uv)
98
+ # xy = np.array(xy)
99
+
100
+ # Solve for trans1
101
+ trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
102
+
103
+ # Solve for trans2
104
+
105
+ # manually reflect the xy data across the Y-axis
106
+ xyR = xy
107
+ xyR[:, 0] = -1 * xyR[:, 0]
108
+
109
+ trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
110
+
111
+ # manually reflect the tform to undo the reflection done on xyR
112
+ TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
113
+
114
+ trans2 = np.dot(trans2r, TreflectY)
115
+
116
+ # Figure out if trans1 or trans2 is better
117
+ xy1 = tformfwd(trans1, uv)
118
+ norm1 = norm(xy1 - xy)
119
+
120
+ xy2 = tformfwd(trans2, uv)
121
+ norm2 = norm(xy2 - xy)
122
+
123
+ if norm1 <= norm2:
124
+ return trans1, trans1_inv
125
+ else:
126
+ trans2_inv = inv(trans2)
127
+ return trans2, trans2_inv
128
+
129
+
130
+ def get_similarity_transform(src_pts, dst_pts, reflective=True):
131
+ """
132
+ Function:
133
+ ----------
134
+ Find Similarity Transform Matrix 'trans':
135
+ u = src_pts[:, 0]
136
+ v = src_pts[:, 1]
137
+ x = dst_pts[:, 0]
138
+ y = dst_pts[:, 1]
139
+ [x, y, 1] = [u, v, 1] * trans
140
+
141
+ Parameters:
142
+ ----------
143
+ @src_pts: Kx2 np.array
144
+ source points, each row is a pair of coordinates (x, y)
145
+ @dst_pts: Kx2 np.array
146
+ destination points, each row is a pair of transformed
147
+ coordinates (x, y)
148
+ @reflective: True or False
149
+ if True:
150
+ use reflective similarity transform
151
+ else:
152
+ use non-reflective similarity transform
153
+
154
+ Returns:
155
+ ----------
156
+ @trans: 3x3 np.array
157
+ transform matrix from uv to xy
158
+ trans_inv: 3x3 np.array
159
+ inverse of trans, transform matrix from xy to uv
160
+ """
161
+
162
+ if reflective:
163
+ trans, trans_inv = findSimilarity(src_pts, dst_pts)
164
+ else:
165
+ trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
166
+
167
+ return trans, trans_inv
168
+
169
+
170
+ def cvt_tform_mat_for_cv2(trans):
171
+ """
172
+ Function:
173
+ ----------
174
+ Convert Transform Matrix 'trans' into 'cv2_trans' which could be
175
+ directly used by cv2.warpAffine():
176
+ u = src_pts[:, 0]
177
+ v = src_pts[:, 1]
178
+ x = dst_pts[:, 0]
179
+ y = dst_pts[:, 1]
180
+ [x, y].T = cv_trans * [u, v, 1].T
181
+
182
+ Parameters:
183
+ ----------
184
+ @trans: 3x3 np.array
185
+ transform matrix from uv to xy
186
+
187
+ Returns:
188
+ ----------
189
+ @cv2_trans: 2x3 np.array
190
+ transform matrix from src_pts to dst_pts, could be directly used
191
+ for cv2.warpAffine()
192
+ """
193
+ cv2_trans = trans[:, 0:2].T
194
+
195
+ return cv2_trans
196
+
197
+
198
+ def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
199
+ """
200
+ Function:
201
+ ----------
202
+ Find Similarity Transform Matrix 'cv2_trans' which could be
203
+ directly used by cv2.warpAffine():
204
+ u = src_pts[:, 0]
205
+ v = src_pts[:, 1]
206
+ x = dst_pts[:, 0]
207
+ y = dst_pts[:, 1]
208
+ [x, y].T = cv_trans * [u, v, 1].T
209
+
210
+ Parameters:
211
+ ----------
212
+ @src_pts: Kx2 np.array
213
+ source points, each row is a pair of coordinates (x, y)
214
+ @dst_pts: Kx2 np.array
215
+ destination points, each row is a pair of transformed
216
+ coordinates (x, y)
217
+ reflective: True or False
218
+ if True:
219
+ use reflective similarity transform
220
+ else:
221
+ use non-reflective similarity transform
222
+
223
+ Returns:
224
+ ----------
225
+ @cv2_trans: 2x3 np.array
226
+ transform matrix from src_pts to dst_pts, could be directly used
227
+ for cv2.warpAffine()
228
+ """
229
+ trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
230
+ cv2_trans = cvt_tform_mat_for_cv2(trans)
231
+
232
+ return cv2_trans
233
+
234
+
235
+ if __name__ == '__main__':
236
+ """
237
+ u = [0, 6, -2]
238
+ v = [0, 3, 5]
239
+ x = [-1, 0, 4]
240
+ y = [-1, -10, 4]
241
+
242
+ # In Matlab, run:
243
+ #
244
+ # uv = [u'; v'];
245
+ # xy = [x'; y'];
246
+ # tform_sim=cp2tform(uv,xy,'similarity');
247
+ #
248
+ # trans = tform_sim.tdata.T
249
+ # ans =
250
+ # -0.0764 -1.6190 0
251
+ # 1.6190 -0.0764 0
252
+ # -3.2156 0.0290 1.0000
253
+ # trans_inv = tform_sim.tdata.Tinv
254
+ # ans =
255
+ #
256
+ # -0.0291 0.6163 0
257
+ # -0.6163 -0.0291 0
258
+ # -0.0756 1.9826 1.0000
259
+ # xy_m=tformfwd(tform_sim, u,v)
260
+ #
261
+ # xy_m =
262
+ #
263
+ # -3.2156 0.0290
264
+ # 1.1833 -9.9143
265
+ # 5.0323 2.8853
266
+ # uv_m=tforminv(tform_sim, x,y)
267
+ #
268
+ # uv_m =
269
+ #
270
+ # 0.5698 1.3953
271
+ # 6.0872 2.2733
272
+ # -2.6570 4.3314
273
+ """
274
+ u = [0, 6, -2]
275
+ v = [0, 3, 5]
276
+ x = [-1, 0, 4]
277
+ y = [-1, -10, 4]
278
+
279
+ uv = np.array((u, v)).T
280
+ xy = np.array((x, y)).T
281
+
282
+ print('\n--->uv:')
283
+ print(uv)
284
+ print('\n--->xy:')
285
+ print(xy)
286
+
287
+ trans, trans_inv = get_similarity_transform(uv, xy)
288
+
289
+ print('\n--->trans matrix:')
290
+ print(trans)
291
+
292
+ print('\n--->trans_inv matrix:')
293
+ print(trans_inv)
294
+
295
+ print('\n---> apply transform to uv')
296
+ print('\nxy_m = uv_augmented * trans')
297
+ uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
298
+ xy_m = np.dot(uv_aug, trans)
299
+ print(xy_m)
300
+
301
+ print('\nxy_m = tformfwd(trans, uv)')
302
+ xy_m = tformfwd(trans, uv)
303
+ print(xy_m)
304
+
305
+ print('\n---> apply inverse transform to xy')
306
+ print('\nuv_m = xy_augmented * trans_inv')
307
+ xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
308
+ uv_m = np.dot(xy_aug, trans_inv)
309
+ print(uv_m)
310
+
311
+ print('\nuv_m = tformfwd(trans_inv, xy)')
312
+ uv_m = tformfwd(trans_inv, xy)
313
+ print(uv_m)
314
+
315
+ uv_m = tforminv(trans, xy)
316
+ print('\nuv_m = tforminv(trans, xy)')
317
+ print(uv_m)
extras/facexlib/detection/retinaface.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from PIL import Image
7
+ from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
8
+
9
+ from extras.facexlib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
10
+ from extras.facexlib.detection.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
11
+ from extras.facexlib.detection.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
12
+ py_cpu_nms)
13
+
14
+
15
+ def generate_config(network_name):
16
+
17
+ cfg_mnet = {
18
+ 'name': 'mobilenet0.25',
19
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
20
+ 'steps': [8, 16, 32],
21
+ 'variance': [0.1, 0.2],
22
+ 'clip': False,
23
+ 'loc_weight': 2.0,
24
+ 'gpu_train': True,
25
+ 'batch_size': 32,
26
+ 'ngpu': 1,
27
+ 'epoch': 250,
28
+ 'decay1': 190,
29
+ 'decay2': 220,
30
+ 'image_size': 640,
31
+ 'return_layers': {
32
+ 'stage1': 1,
33
+ 'stage2': 2,
34
+ 'stage3': 3
35
+ },
36
+ 'in_channel': 32,
37
+ 'out_channel': 64
38
+ }
39
+
40
+ cfg_re50 = {
41
+ 'name': 'Resnet50',
42
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
43
+ 'steps': [8, 16, 32],
44
+ 'variance': [0.1, 0.2],
45
+ 'clip': False,
46
+ 'loc_weight': 2.0,
47
+ 'gpu_train': True,
48
+ 'batch_size': 24,
49
+ 'ngpu': 4,
50
+ 'epoch': 100,
51
+ 'decay1': 70,
52
+ 'decay2': 90,
53
+ 'image_size': 840,
54
+ 'return_layers': {
55
+ 'layer2': 1,
56
+ 'layer3': 2,
57
+ 'layer4': 3
58
+ },
59
+ 'in_channel': 256,
60
+ 'out_channel': 256
61
+ }
62
+
63
+ if network_name == 'mobile0.25':
64
+ return cfg_mnet
65
+ elif network_name == 'resnet50':
66
+ return cfg_re50
67
+ else:
68
+ raise NotImplementedError(f'network_name={network_name}')
69
+
70
+
71
+ class RetinaFace(nn.Module):
72
+
73
+ def __init__(self, network_name='resnet50', half=False, phase='test', device=None):
74
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
75
+
76
+ super(RetinaFace, self).__init__()
77
+ self.half_inference = half
78
+ cfg = generate_config(network_name)
79
+ self.backbone = cfg['name']
80
+
81
+ self.model_name = f'retinaface_{network_name}'
82
+ self.cfg = cfg
83
+ self.phase = phase
84
+ self.target_size, self.max_size = 1600, 2150
85
+ self.resize, self.scale, self.scale1 = 1., None, None
86
+ self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]], device=self.device)
87
+ self.reference = get_reference_facial_points(default_square=True)
88
+ # Build network.
89
+ backbone = None
90
+ if cfg['name'] == 'mobilenet0.25':
91
+ backbone = MobileNetV1()
92
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
93
+ elif cfg['name'] == 'Resnet50':
94
+ import torchvision.models as models
95
+ backbone = models.resnet50(weights=None)
96
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
97
+
98
+ in_channels_stage2 = cfg['in_channel']
99
+ in_channels_list = [
100
+ in_channels_stage2 * 2,
101
+ in_channels_stage2 * 4,
102
+ in_channels_stage2 * 8,
103
+ ]
104
+
105
+ out_channels = cfg['out_channel']
106
+ self.fpn = FPN(in_channels_list, out_channels)
107
+ self.ssh1 = SSH(out_channels, out_channels)
108
+ self.ssh2 = SSH(out_channels, out_channels)
109
+ self.ssh3 = SSH(out_channels, out_channels)
110
+
111
+ self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
112
+ self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
113
+ self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
114
+
115
+ self.to(self.device)
116
+ self.eval()
117
+ if self.half_inference:
118
+ self.half()
119
+
120
+ def forward(self, inputs):
121
+ out = self.body(inputs)
122
+
123
+ if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
124
+ out = list(out.values())
125
+ # FPN
126
+ fpn = self.fpn(out)
127
+
128
+ # SSH
129
+ feature1 = self.ssh1(fpn[0])
130
+ feature2 = self.ssh2(fpn[1])
131
+ feature3 = self.ssh3(fpn[2])
132
+ features = [feature1, feature2, feature3]
133
+
134
+ bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
135
+ classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
136
+ tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
137
+ ldm_regressions = (torch.cat(tmp, dim=1))
138
+
139
+ if self.phase == 'train':
140
+ output = (bbox_regressions, classifications, ldm_regressions)
141
+ else:
142
+ output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
143
+ return output
144
+
145
+ def __detect_faces(self, inputs):
146
+ # get scale
147
+ height, width = inputs.shape[2:]
148
+ self.scale = torch.tensor([width, height, width, height], dtype=torch.float32, device=self.device)
149
+ tmp = [width, height, width, height, width, height, width, height, width, height]
150
+ self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device)
151
+
152
+ # forawrd
153
+ inputs = inputs.to(self.device)
154
+ if self.half_inference:
155
+ inputs = inputs.half()
156
+ loc, conf, landmarks = self(inputs)
157
+
158
+ # get priorbox
159
+ priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
160
+ priors = priorbox.forward().to(self.device)
161
+
162
+ return loc, conf, landmarks, priors
163
+
164
+ # single image detection
165
+ def transform(self, image, use_origin_size):
166
+ # convert to opencv format
167
+ if isinstance(image, Image.Image):
168
+ image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
169
+ image = image.astype(np.float32)
170
+
171
+ # testing scale
172
+ im_size_min = np.min(image.shape[0:2])
173
+ im_size_max = np.max(image.shape[0:2])
174
+ resize = float(self.target_size) / float(im_size_min)
175
+
176
+ # prevent bigger axis from being more than max_size
177
+ if np.round(resize * im_size_max) > self.max_size:
178
+ resize = float(self.max_size) / float(im_size_max)
179
+ resize = 1 if use_origin_size else resize
180
+
181
+ # resize
182
+ if resize != 1:
183
+ image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
184
+
185
+ # convert to torch.tensor format
186
+ # image -= (104, 117, 123)
187
+ image = image.transpose(2, 0, 1)
188
+ image = torch.from_numpy(image).unsqueeze(0)
189
+
190
+ return image, resize
191
+
192
+ def detect_faces(
193
+ self,
194
+ image,
195
+ conf_threshold=0.8,
196
+ nms_threshold=0.4,
197
+ use_origin_size=True,
198
+ ):
199
+ image, self.resize = self.transform(image, use_origin_size)
200
+ image = image.to(self.device)
201
+ if self.half_inference:
202
+ image = image.half()
203
+ image = image - self.mean_tensor
204
+
205
+ loc, conf, landmarks, priors = self.__detect_faces(image)
206
+
207
+ boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
208
+ boxes = boxes * self.scale / self.resize
209
+ boxes = boxes.cpu().numpy()
210
+
211
+ scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
212
+
213
+ landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
214
+ landmarks = landmarks * self.scale1 / self.resize
215
+ landmarks = landmarks.cpu().numpy()
216
+
217
+ # ignore low scores
218
+ inds = np.where(scores > conf_threshold)[0]
219
+ boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
220
+
221
+ # sort
222
+ order = scores.argsort()[::-1]
223
+ boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
224
+
225
+ # do NMS
226
+ bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
227
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
228
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
229
+ # self.t['forward_pass'].toc()
230
+ # print(self.t['forward_pass'].average_time)
231
+ # import sys
232
+ # sys.stdout.flush()
233
+ return np.concatenate((bounding_boxes, landmarks), axis=1)
234
+
235
+ def __align_multi(self, image, boxes, landmarks, limit=None):
236
+
237
+ if len(boxes) < 1:
238
+ return [], []
239
+
240
+ if limit:
241
+ boxes = boxes[:limit]
242
+ landmarks = landmarks[:limit]
243
+
244
+ faces = []
245
+ for landmark in landmarks:
246
+ facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
247
+
248
+ warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
249
+ faces.append(warped_face)
250
+
251
+ return np.concatenate((boxes, landmarks), axis=1), faces
252
+
253
+ def align_multi(self, img, conf_threshold=0.8, limit=None):
254
+
255
+ rlt = self.detect_faces(img, conf_threshold=conf_threshold)
256
+ boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
257
+
258
+ return self.__align_multi(img, boxes, landmarks, limit)
259
+
260
+ # batched detection
261
+ def batched_transform(self, frames, use_origin_size):
262
+ """
263
+ Arguments:
264
+ frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
265
+ type=np.float32, BGR format).
266
+ use_origin_size: whether to use origin size.
267
+ """
268
+ from_PIL = True if isinstance(frames[0], Image.Image) else False
269
+
270
+ # convert to opencv format
271
+ if from_PIL:
272
+ frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
273
+ frames = np.asarray(frames, dtype=np.float32)
274
+
275
+ # testing scale
276
+ im_size_min = np.min(frames[0].shape[0:2])
277
+ im_size_max = np.max(frames[0].shape[0:2])
278
+ resize = float(self.target_size) / float(im_size_min)
279
+
280
+ # prevent bigger axis from being more than max_size
281
+ if np.round(resize * im_size_max) > self.max_size:
282
+ resize = float(self.max_size) / float(im_size_max)
283
+ resize = 1 if use_origin_size else resize
284
+
285
+ # resize
286
+ if resize != 1:
287
+ if not from_PIL:
288
+ frames = F.interpolate(frames, scale_factor=resize)
289
+ else:
290
+ frames = [
291
+ cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
292
+ for frame in frames
293
+ ]
294
+
295
+ # convert to torch.tensor format
296
+ if not from_PIL:
297
+ frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
298
+ else:
299
+ frames = frames.transpose((0, 3, 1, 2))
300
+ frames = torch.from_numpy(frames)
301
+
302
+ return frames, resize
303
+
304
+ def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
305
+ """
306
+ Arguments:
307
+ frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
308
+ type=np.uint8, BGR format).
309
+ conf_threshold: confidence threshold.
310
+ nms_threshold: nms threshold.
311
+ use_origin_size: whether to use origin size.
312
+ Returns:
313
+ final_bounding_boxes: list of np.array ([n_boxes, 5],
314
+ type=np.float32).
315
+ final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
316
+ """
317
+ # self.t['forward_pass'].tic()
318
+ frames, self.resize = self.batched_transform(frames, use_origin_size)
319
+ frames = frames.to(self.device)
320
+ frames = frames - self.mean_tensor
321
+
322
+ b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
323
+
324
+ final_bounding_boxes, final_landmarks = [], []
325
+
326
+ # decode
327
+ priors = priors.unsqueeze(0)
328
+ b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
329
+ b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
330
+ b_conf = b_conf[:, :, 1]
331
+
332
+ # index for selection
333
+ b_indice = b_conf > conf_threshold
334
+
335
+ # concat
336
+ b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
337
+
338
+ for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
339
+
340
+ # ignore low scores
341
+ pred, landm = pred[inds, :], landm[inds, :]
342
+ if pred.shape[0] == 0:
343
+ final_bounding_boxes.append(np.array([], dtype=np.float32))
344
+ final_landmarks.append(np.array([], dtype=np.float32))
345
+ continue
346
+
347
+ # sort
348
+ # order = score.argsort(descending=True)
349
+ # box, landm, score = box[order], landm[order], score[order]
350
+
351
+ # to CPU
352
+ bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
353
+
354
+ # NMS
355
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
356
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
357
+
358
+ # append
359
+ final_bounding_boxes.append(bounding_boxes)
360
+ final_landmarks.append(landmarks)
361
+ # self.t['forward_pass'].toc(average=True)
362
+ # self.batch_time += self.t['forward_pass'].diff
363
+ # self.total_frame += len(frames)
364
+ # print(self.batch_time / self.total_frame)
365
+
366
+ return final_bounding_boxes, final_landmarks
extras/facexlib/detection/retinaface_net.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ def conv_bn(inp, oup, stride=1, leaky=0):
7
+ return nn.Sequential(
8
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
9
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
10
+
11
+
12
+ def conv_bn_no_relu(inp, oup, stride):
13
+ return nn.Sequential(
14
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
15
+ nn.BatchNorm2d(oup),
16
+ )
17
+
18
+
19
+ def conv_bn1X1(inp, oup, stride, leaky=0):
20
+ return nn.Sequential(
21
+ nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
22
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
23
+
24
+
25
+ def conv_dw(inp, oup, stride, leaky=0.1):
26
+ return nn.Sequential(
27
+ nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
28
+ nn.BatchNorm2d(inp),
29
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
30
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
31
+ nn.BatchNorm2d(oup),
32
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
33
+ )
34
+
35
+
36
+ class SSH(nn.Module):
37
+
38
+ def __init__(self, in_channel, out_channel):
39
+ super(SSH, self).__init__()
40
+ assert out_channel % 4 == 0
41
+ leaky = 0
42
+ if (out_channel <= 64):
43
+ leaky = 0.1
44
+ self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
45
+
46
+ self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
47
+ self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
48
+
49
+ self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
50
+ self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
51
+
52
+ def forward(self, input):
53
+ conv3X3 = self.conv3X3(input)
54
+
55
+ conv5X5_1 = self.conv5X5_1(input)
56
+ conv5X5 = self.conv5X5_2(conv5X5_1)
57
+
58
+ conv7X7_2 = self.conv7X7_2(conv5X5_1)
59
+ conv7X7 = self.conv7x7_3(conv7X7_2)
60
+
61
+ out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
62
+ out = F.relu(out)
63
+ return out
64
+
65
+
66
+ class FPN(nn.Module):
67
+
68
+ def __init__(self, in_channels_list, out_channels):
69
+ super(FPN, self).__init__()
70
+ leaky = 0
71
+ if (out_channels <= 64):
72
+ leaky = 0.1
73
+ self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
74
+ self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
75
+ self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
76
+
77
+ self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
78
+ self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
79
+
80
+ def forward(self, input):
81
+ # names = list(input.keys())
82
+ # input = list(input.values())
83
+
84
+ output1 = self.output1(input[0])
85
+ output2 = self.output2(input[1])
86
+ output3 = self.output3(input[2])
87
+
88
+ up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
89
+ output2 = output2 + up3
90
+ output2 = self.merge2(output2)
91
+
92
+ up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
93
+ output1 = output1 + up2
94
+ output1 = self.merge1(output1)
95
+
96
+ out = [output1, output2, output3]
97
+ return out
98
+
99
+
100
+ class MobileNetV1(nn.Module):
101
+
102
+ def __init__(self):
103
+ super(MobileNetV1, self).__init__()
104
+ self.stage1 = nn.Sequential(
105
+ conv_bn(3, 8, 2, leaky=0.1), # 3
106
+ conv_dw(8, 16, 1), # 7
107
+ conv_dw(16, 32, 2), # 11
108
+ conv_dw(32, 32, 1), # 19
109
+ conv_dw(32, 64, 2), # 27
110
+ conv_dw(64, 64, 1), # 43
111
+ )
112
+ self.stage2 = nn.Sequential(
113
+ conv_dw(64, 128, 2), # 43 + 16 = 59
114
+ conv_dw(128, 128, 1), # 59 + 32 = 91
115
+ conv_dw(128, 128, 1), # 91 + 32 = 123
116
+ conv_dw(128, 128, 1), # 123 + 32 = 155
117
+ conv_dw(128, 128, 1), # 155 + 32 = 187
118
+ conv_dw(128, 128, 1), # 187 + 32 = 219
119
+ )
120
+ self.stage3 = nn.Sequential(
121
+ conv_dw(128, 256, 2), # 219 +3 2 = 241
122
+ conv_dw(256, 256, 1), # 241 + 64 = 301
123
+ )
124
+ self.avg = nn.AdaptiveAvgPool2d((1, 1))
125
+ self.fc = nn.Linear(256, 1000)
126
+
127
+ def forward(self, x):
128
+ x = self.stage1(x)
129
+ x = self.stage2(x)
130
+ x = self.stage3(x)
131
+ x = self.avg(x)
132
+ # x = self.model(x)
133
+ x = x.view(-1, 256)
134
+ x = self.fc(x)
135
+ return x
136
+
137
+
138
+ class ClassHead(nn.Module):
139
+
140
+ def __init__(self, inchannels=512, num_anchors=3):
141
+ super(ClassHead, self).__init__()
142
+ self.num_anchors = num_anchors
143
+ self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
144
+
145
+ def forward(self, x):
146
+ out = self.conv1x1(x)
147
+ out = out.permute(0, 2, 3, 1).contiguous()
148
+
149
+ return out.view(out.shape[0], -1, 2)
150
+
151
+
152
+ class BboxHead(nn.Module):
153
+
154
+ def __init__(self, inchannels=512, num_anchors=3):
155
+ super(BboxHead, self).__init__()
156
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
157
+
158
+ def forward(self, x):
159
+ out = self.conv1x1(x)
160
+ out = out.permute(0, 2, 3, 1).contiguous()
161
+
162
+ return out.view(out.shape[0], -1, 4)
163
+
164
+
165
+ class LandmarkHead(nn.Module):
166
+
167
+ def __init__(self, inchannels=512, num_anchors=3):
168
+ super(LandmarkHead, self).__init__()
169
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
170
+
171
+ def forward(self, x):
172
+ out = self.conv1x1(x)
173
+ out = out.permute(0, 2, 3, 1).contiguous()
174
+
175
+ return out.view(out.shape[0], -1, 10)
176
+
177
+
178
+ def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
179
+ classhead = nn.ModuleList()
180
+ for i in range(fpn_num):
181
+ classhead.append(ClassHead(inchannels, anchor_num))
182
+ return classhead
183
+
184
+
185
+ def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
186
+ bboxhead = nn.ModuleList()
187
+ for i in range(fpn_num):
188
+ bboxhead.append(BboxHead(inchannels, anchor_num))
189
+ return bboxhead
190
+
191
+
192
+ def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
193
+ landmarkhead = nn.ModuleList()
194
+ for i in range(fpn_num):
195
+ landmarkhead.append(LandmarkHead(inchannels, anchor_num))
196
+ return landmarkhead
extras/facexlib/detection/retinaface_utils.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torchvision
4
+ from itertools import product as product
5
+ from math import ceil
6
+
7
+
8
+ class PriorBox(object):
9
+
10
+ def __init__(self, cfg, image_size=None, phase='train'):
11
+ super(PriorBox, self).__init__()
12
+ self.min_sizes = cfg['min_sizes']
13
+ self.steps = cfg['steps']
14
+ self.clip = cfg['clip']
15
+ self.image_size = image_size
16
+ self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
17
+ self.name = 's'
18
+
19
+ def forward(self):
20
+ anchors = []
21
+ for k, f in enumerate(self.feature_maps):
22
+ min_sizes = self.min_sizes[k]
23
+ for i, j in product(range(f[0]), range(f[1])):
24
+ for min_size in min_sizes:
25
+ s_kx = min_size / self.image_size[1]
26
+ s_ky = min_size / self.image_size[0]
27
+ dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
28
+ dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
29
+ for cy, cx in product(dense_cy, dense_cx):
30
+ anchors += [cx, cy, s_kx, s_ky]
31
+
32
+ # back to torch land
33
+ output = torch.Tensor(anchors).view(-1, 4)
34
+ if self.clip:
35
+ output.clamp_(max=1, min=0)
36
+ return output
37
+
38
+
39
+ def py_cpu_nms(dets, thresh):
40
+ """Pure Python NMS baseline."""
41
+ keep = torchvision.ops.nms(
42
+ boxes=torch.Tensor(dets[:, :4]),
43
+ scores=torch.Tensor(dets[:, 4]),
44
+ iou_threshold=thresh,
45
+ )
46
+
47
+ return list(keep)
48
+
49
+
50
+ def point_form(boxes):
51
+ """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
52
+ representation for comparison to point form ground truth data.
53
+ Args:
54
+ boxes: (tensor) center-size default boxes from priorbox layers.
55
+ Return:
56
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
57
+ """
58
+ return torch.cat(
59
+ (
60
+ boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
61
+ boxes[:, :2] + boxes[:, 2:] / 2),
62
+ 1) # xmax, ymax
63
+
64
+
65
+ def center_size(boxes):
66
+ """ Convert prior_boxes to (cx, cy, w, h)
67
+ representation for comparison to center-size form ground truth data.
68
+ Args:
69
+ boxes: (tensor) point_form boxes
70
+ Return:
71
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
72
+ """
73
+ return torch.cat(
74
+ (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
75
+ boxes[:, 2:] - boxes[:, :2],
76
+ 1) # w, h
77
+
78
+
79
+ def intersect(box_a, box_b):
80
+ """ We resize both tensors to [A,B,2] without new malloc:
81
+ [A,2] -> [A,1,2] -> [A,B,2]
82
+ [B,2] -> [1,B,2] -> [A,B,2]
83
+ Then we compute the area of intersect between box_a and box_b.
84
+ Args:
85
+ box_a: (tensor) bounding boxes, Shape: [A,4].
86
+ box_b: (tensor) bounding boxes, Shape: [B,4].
87
+ Return:
88
+ (tensor) intersection area, Shape: [A,B].
89
+ """
90
+ A = box_a.size(0)
91
+ B = box_b.size(0)
92
+ max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
93
+ min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
94
+ inter = torch.clamp((max_xy - min_xy), min=0)
95
+ return inter[:, :, 0] * inter[:, :, 1]
96
+
97
+
98
+ def jaccard(box_a, box_b):
99
+ """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
100
+ is simply the intersection over union of two boxes. Here we operate on
101
+ ground truth boxes and default boxes.
102
+ E.g.:
103
+ A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
104
+ Args:
105
+ box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
106
+ box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
107
+ Return:
108
+ jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
109
+ """
110
+ inter = intersect(box_a, box_b)
111
+ area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
112
+ area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
113
+ union = area_a + area_b - inter
114
+ return inter / union # [A,B]
115
+
116
+
117
+ def matrix_iou(a, b):
118
+ """
119
+ return iou of a and b, numpy version for data augenmentation
120
+ """
121
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
122
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
123
+
124
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
125
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
126
+ area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
127
+ return area_i / (area_a[:, np.newaxis] + area_b - area_i)
128
+
129
+
130
+ def matrix_iof(a, b):
131
+ """
132
+ return iof of a and b, numpy version for data augenmentation
133
+ """
134
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
135
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
136
+
137
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
138
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
139
+ return area_i / np.maximum(area_a[:, np.newaxis], 1)
140
+
141
+
142
+ def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
143
+ """Match each prior box with the ground truth box of the highest jaccard
144
+ overlap, encode the bounding boxes, then return the matched indices
145
+ corresponding to both confidence and location preds.
146
+ Args:
147
+ threshold: (float) The overlap threshold used when matching boxes.
148
+ truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
149
+ priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
150
+ variances: (tensor) Variances corresponding to each prior coord,
151
+ Shape: [num_priors, 4].
152
+ labels: (tensor) All the class labels for the image, Shape: [num_obj].
153
+ landms: (tensor) Ground truth landms, Shape [num_obj, 10].
154
+ loc_t: (tensor) Tensor to be filled w/ encoded location targets.
155
+ conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
156
+ landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
157
+ idx: (int) current batch index
158
+ Return:
159
+ The matched indices corresponding to 1)location 2)confidence
160
+ 3)landm preds.
161
+ """
162
+ # jaccard index
163
+ overlaps = jaccard(truths, point_form(priors))
164
+ # (Bipartite Matching)
165
+ # [1,num_objects] best prior for each ground truth
166
+ best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
167
+
168
+ # ignore hard gt
169
+ valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
170
+ best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
171
+ if best_prior_idx_filter.shape[0] <= 0:
172
+ loc_t[idx] = 0
173
+ conf_t[idx] = 0
174
+ return
175
+
176
+ # [1,num_priors] best ground truth for each prior
177
+ best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
178
+ best_truth_idx.squeeze_(0)
179
+ best_truth_overlap.squeeze_(0)
180
+ best_prior_idx.squeeze_(1)
181
+ best_prior_idx_filter.squeeze_(1)
182
+ best_prior_overlap.squeeze_(1)
183
+ best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
184
+ # TODO refactor: index best_prior_idx with long tensor
185
+ # ensure every gt matches with its prior of max overlap
186
+ for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
187
+ best_truth_idx[best_prior_idx[j]] = j
188
+ matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
189
+ conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
190
+ conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
191
+ loc = encode(matches, priors, variances)
192
+
193
+ matches_landm = landms[best_truth_idx]
194
+ landm = encode_landm(matches_landm, priors, variances)
195
+ loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
196
+ conf_t[idx] = conf # [num_priors] top class label for each prior
197
+ landm_t[idx] = landm
198
+
199
+
200
+ def encode(matched, priors, variances):
201
+ """Encode the variances from the priorbox layers into the ground truth boxes
202
+ we have matched (based on jaccard overlap) with the prior boxes.
203
+ Args:
204
+ matched: (tensor) Coords of ground truth for each prior in point-form
205
+ Shape: [num_priors, 4].
206
+ priors: (tensor) Prior boxes in center-offset form
207
+ Shape: [num_priors,4].
208
+ variances: (list[float]) Variances of priorboxes
209
+ Return:
210
+ encoded boxes (tensor), Shape: [num_priors, 4]
211
+ """
212
+
213
+ # dist b/t match center and prior's center
214
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
215
+ # encode variance
216
+ g_cxcy /= (variances[0] * priors[:, 2:])
217
+ # match wh / prior wh
218
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
219
+ g_wh = torch.log(g_wh) / variances[1]
220
+ # return target for smooth_l1_loss
221
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
222
+
223
+
224
+ def encode_landm(matched, priors, variances):
225
+ """Encode the variances from the priorbox layers into the ground truth boxes
226
+ we have matched (based on jaccard overlap) with the prior boxes.
227
+ Args:
228
+ matched: (tensor) Coords of ground truth for each prior in point-form
229
+ Shape: [num_priors, 10].
230
+ priors: (tensor) Prior boxes in center-offset form
231
+ Shape: [num_priors,4].
232
+ variances: (list[float]) Variances of priorboxes
233
+ Return:
234
+ encoded landm (tensor), Shape: [num_priors, 10]
235
+ """
236
+
237
+ # dist b/t match center and prior's center
238
+ matched = torch.reshape(matched, (matched.size(0), 5, 2))
239
+ priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
240
+ priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
241
+ priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
242
+ priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
243
+ priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
244
+ g_cxcy = matched[:, :, :2] - priors[:, :, :2]
245
+ # encode variance
246
+ g_cxcy /= (variances[0] * priors[:, :, 2:])
247
+ # g_cxcy /= priors[:, :, 2:]
248
+ g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
249
+ # return target for smooth_l1_loss
250
+ return g_cxcy
251
+
252
+
253
+ # Adapted from https://github.com/Hakuyume/chainer-ssd
254
+ def decode(loc, priors, variances):
255
+ """Decode locations from predictions using priors to undo
256
+ the encoding we did for offset regression at train time.
257
+ Args:
258
+ loc (tensor): location predictions for loc layers,
259
+ Shape: [num_priors,4]
260
+ priors (tensor): Prior boxes in center-offset form.
261
+ Shape: [num_priors,4].
262
+ variances: (list[float]) Variances of priorboxes
263
+ Return:
264
+ decoded bounding box predictions
265
+ """
266
+
267
+ boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
268
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
269
+ boxes[:, :2] -= boxes[:, 2:] / 2
270
+ boxes[:, 2:] += boxes[:, :2]
271
+ return boxes
272
+
273
+
274
+ def decode_landm(pre, priors, variances):
275
+ """Decode landm from predictions using priors to undo
276
+ the encoding we did for offset regression at train time.
277
+ Args:
278
+ pre (tensor): landm predictions for loc layers,
279
+ Shape: [num_priors,10]
280
+ priors (tensor): Prior boxes in center-offset form.
281
+ Shape: [num_priors,4].
282
+ variances: (list[float]) Variances of priorboxes
283
+ Return:
284
+ decoded landm predictions
285
+ """
286
+ tmp = (
287
+ priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
288
+ priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
289
+ priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
290
+ priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
291
+ priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
292
+ )
293
+ landms = torch.cat(tmp, dim=1)
294
+ return landms
295
+
296
+
297
+ def batched_decode(b_loc, priors, variances):
298
+ """Decode locations from predictions using priors to undo
299
+ the encoding we did for offset regression at train time.
300
+ Args:
301
+ b_loc (tensor): location predictions for loc layers,
302
+ Shape: [num_batches,num_priors,4]
303
+ priors (tensor): Prior boxes in center-offset form.
304
+ Shape: [1,num_priors,4].
305
+ variances: (list[float]) Variances of priorboxes
306
+ Return:
307
+ decoded bounding box predictions
308
+ """
309
+ boxes = (
310
+ priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
311
+ priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
312
+ )
313
+ boxes = torch.cat(boxes, dim=2)
314
+
315
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
316
+ boxes[:, :, 2:] += boxes[:, :, :2]
317
+ return boxes
318
+
319
+
320
+ def batched_decode_landm(pre, priors, variances):
321
+ """Decode landm from predictions using priors to undo
322
+ the encoding we did for offset regression at train time.
323
+ Args:
324
+ pre (tensor): landm predictions for loc layers,
325
+ Shape: [num_batches,num_priors,10]
326
+ priors (tensor): Prior boxes in center-offset form.
327
+ Shape: [1,num_priors,4].
328
+ variances: (list[float]) Variances of priorboxes
329
+ Return:
330
+ decoded landm predictions
331
+ """
332
+ landms = (
333
+ priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
334
+ priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
335
+ priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
336
+ priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
337
+ priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
338
+ )
339
+ landms = torch.cat(landms, dim=2)
340
+ return landms
341
+
342
+
343
+ def log_sum_exp(x):
344
+ """Utility function for computing log_sum_exp while determining
345
+ This will be used to determine unaveraged confidence loss across
346
+ all examples in a batch.
347
+ Args:
348
+ x (Variable(tensor)): conf_preds from conf layers
349
+ """
350
+ x_max = x.data.max()
351
+ return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
352
+
353
+
354
+ # Original author: Francisco Massa:
355
+ # https://github.com/fmassa/object-detection.torch
356
+ # Ported to PyTorch by Max deGroot (02/01/2017)
357
+ def nms(boxes, scores, overlap=0.5, top_k=200):
358
+ """Apply non-maximum suppression at test time to avoid detecting too many
359
+ overlapping bounding boxes for a given object.
360
+ Args:
361
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
362
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
363
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
364
+ top_k: (int) The Maximum number of box preds to consider.
365
+ Return:
366
+ The indices of the kept boxes with respect to num_priors.
367
+ """
368
+
369
+ keep = torch.Tensor(scores.size(0)).fill_(0).long()
370
+ if boxes.numel() == 0:
371
+ return keep
372
+ x1 = boxes[:, 0]
373
+ y1 = boxes[:, 1]
374
+ x2 = boxes[:, 2]
375
+ y2 = boxes[:, 3]
376
+ area = torch.mul(x2 - x1, y2 - y1)
377
+ v, idx = scores.sort(0) # sort in ascending order
378
+ # I = I[v >= 0.01]
379
+ idx = idx[-top_k:] # indices of the top-k largest vals
380
+ xx1 = boxes.new()
381
+ yy1 = boxes.new()
382
+ xx2 = boxes.new()
383
+ yy2 = boxes.new()
384
+ w = boxes.new()
385
+ h = boxes.new()
386
+
387
+ # keep = torch.Tensor()
388
+ count = 0
389
+ while idx.numel() > 0:
390
+ i = idx[-1] # index of current largest val
391
+ # keep.append(i)
392
+ keep[count] = i
393
+ count += 1
394
+ if idx.size(0) == 1:
395
+ break
396
+ idx = idx[:-1] # remove kept element from view
397
+ # load bboxes of next highest vals
398
+ torch.index_select(x1, 0, idx, out=xx1)
399
+ torch.index_select(y1, 0, idx, out=yy1)
400
+ torch.index_select(x2, 0, idx, out=xx2)
401
+ torch.index_select(y2, 0, idx, out=yy2)
402
+ # store element-wise max with next highest score
403
+ xx1 = torch.clamp(xx1, min=x1[i])
404
+ yy1 = torch.clamp(yy1, min=y1[i])
405
+ xx2 = torch.clamp(xx2, max=x2[i])
406
+ yy2 = torch.clamp(yy2, max=y2[i])
407
+ w.resize_as_(xx2)
408
+ h.resize_as_(yy2)
409
+ w = xx2 - xx1
410
+ h = yy2 - yy1
411
+ # check sizes of xx1 and xx2.. after each iteration
412
+ w = torch.clamp(w, min=0.0)
413
+ h = torch.clamp(h, min=0.0)
414
+ inter = w * h
415
+ # IoU = i / (area(a) + area(b) - i)
416
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
417
+ union = (rem_areas - inter) + area[i]
418
+ IoU = inter / union # store result in iou
419
+ # keep only elements with an IoU <= overlap
420
+ idx = idx[IoU.le(overlap)]
421
+ return keep, count
extras/facexlib/parsing/__init__.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from extras.facexlib.utils import load_file_from_url
4
+ from .bisenet import BiSeNet
5
+ from .parsenet import ParseNet
6
+
7
+
8
+ def init_parsing_model(model_name='bisenet', half=False, device='cuda', model_rootpath=None):
9
+ if model_name == 'bisenet':
10
+ model = BiSeNet(num_class=19)
11
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/parsing_bisenet.pth'
12
+ elif model_name == 'parsenet':
13
+ model = ParseNet(in_size=512, out_size=512, parsing_ch=19)
14
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth'
15
+ else:
16
+ raise NotImplementedError(f'{model_name} is not implemented.')
17
+
18
+ model_path = load_file_from_url(
19
+ url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
20
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
21
+ model.load_state_dict(load_net, strict=True)
22
+ model.eval()
23
+ model = model.to(device)
24
+ return model
extras/facexlib/parsing/bisenet.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .resnet import ResNet18
6
+
7
+
8
+ class ConvBNReLU(nn.Module):
9
+
10
+ def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
11
+ super(ConvBNReLU, self).__init__()
12
+ self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
13
+ self.bn = nn.BatchNorm2d(out_chan)
14
+
15
+ def forward(self, x):
16
+ x = self.conv(x)
17
+ x = F.relu(self.bn(x))
18
+ return x
19
+
20
+
21
+ class BiSeNetOutput(nn.Module):
22
+
23
+ def __init__(self, in_chan, mid_chan, num_class):
24
+ super(BiSeNetOutput, self).__init__()
25
+ self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
26
+ self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
27
+
28
+ def forward(self, x):
29
+ feat = self.conv(x)
30
+ out = self.conv_out(feat)
31
+ return out, feat
32
+
33
+
34
+ class AttentionRefinementModule(nn.Module):
35
+
36
+ def __init__(self, in_chan, out_chan):
37
+ super(AttentionRefinementModule, self).__init__()
38
+ self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
39
+ self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
40
+ self.bn_atten = nn.BatchNorm2d(out_chan)
41
+ self.sigmoid_atten = nn.Sigmoid()
42
+
43
+ def forward(self, x):
44
+ feat = self.conv(x)
45
+ atten = F.avg_pool2d(feat, feat.size()[2:])
46
+ atten = self.conv_atten(atten)
47
+ atten = self.bn_atten(atten)
48
+ atten = self.sigmoid_atten(atten)
49
+ out = torch.mul(feat, atten)
50
+ return out
51
+
52
+
53
+ class ContextPath(nn.Module):
54
+
55
+ def __init__(self):
56
+ super(ContextPath, self).__init__()
57
+ self.resnet = ResNet18()
58
+ self.arm16 = AttentionRefinementModule(256, 128)
59
+ self.arm32 = AttentionRefinementModule(512, 128)
60
+ self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
61
+ self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
62
+ self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
63
+
64
+ def forward(self, x):
65
+ feat8, feat16, feat32 = self.resnet(x)
66
+ h8, w8 = feat8.size()[2:]
67
+ h16, w16 = feat16.size()[2:]
68
+ h32, w32 = feat32.size()[2:]
69
+
70
+ avg = F.avg_pool2d(feat32, feat32.size()[2:])
71
+ avg = self.conv_avg(avg)
72
+ avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
73
+
74
+ feat32_arm = self.arm32(feat32)
75
+ feat32_sum = feat32_arm + avg_up
76
+ feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
77
+ feat32_up = self.conv_head32(feat32_up)
78
+
79
+ feat16_arm = self.arm16(feat16)
80
+ feat16_sum = feat16_arm + feat32_up
81
+ feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
82
+ feat16_up = self.conv_head16(feat16_up)
83
+
84
+ return feat8, feat16_up, feat32_up # x8, x8, x16
85
+
86
+
87
+ class FeatureFusionModule(nn.Module):
88
+
89
+ def __init__(self, in_chan, out_chan):
90
+ super(FeatureFusionModule, self).__init__()
91
+ self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
92
+ self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
93
+ self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
94
+ self.relu = nn.ReLU(inplace=True)
95
+ self.sigmoid = nn.Sigmoid()
96
+
97
+ def forward(self, fsp, fcp):
98
+ fcat = torch.cat([fsp, fcp], dim=1)
99
+ feat = self.convblk(fcat)
100
+ atten = F.avg_pool2d(feat, feat.size()[2:])
101
+ atten = self.conv1(atten)
102
+ atten = self.relu(atten)
103
+ atten = self.conv2(atten)
104
+ atten = self.sigmoid(atten)
105
+ feat_atten = torch.mul(feat, atten)
106
+ feat_out = feat_atten + feat
107
+ return feat_out
108
+
109
+
110
+ class BiSeNet(nn.Module):
111
+
112
+ def __init__(self, num_class):
113
+ super(BiSeNet, self).__init__()
114
+ self.cp = ContextPath()
115
+ self.ffm = FeatureFusionModule(256, 256)
116
+ self.conv_out = BiSeNetOutput(256, 256, num_class)
117
+ self.conv_out16 = BiSeNetOutput(128, 64, num_class)
118
+ self.conv_out32 = BiSeNetOutput(128, 64, num_class)
119
+
120
+ def forward(self, x, return_feat=False):
121
+ h, w = x.size()[2:]
122
+ feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
123
+ feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
124
+ feat_fuse = self.ffm(feat_sp, feat_cp8)
125
+
126
+ out, feat = self.conv_out(feat_fuse)
127
+ out16, feat16 = self.conv_out16(feat_cp8)
128
+ out32, feat32 = self.conv_out32(feat_cp16)
129
+
130
+ out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
131
+ out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
132
+ out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
133
+
134
+ if return_feat:
135
+ feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
136
+ feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
137
+ feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
138
+ return out, out16, out32, feat, feat16, feat32
139
+ else:
140
+ return out, out16, out32
extras/facexlib/parsing/parsenet.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/chaofengc/PSFRGAN
2
+ """
3
+ import numpy as np
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ class NormLayer(nn.Module):
9
+ """Normalization Layers.
10
+
11
+ Args:
12
+ channels: input channels, for batch norm and instance norm.
13
+ input_size: input shape without batch size, for layer norm.
14
+ """
15
+
16
+ def __init__(self, channels, normalize_shape=None, norm_type='bn'):
17
+ super(NormLayer, self).__init__()
18
+ norm_type = norm_type.lower()
19
+ self.norm_type = norm_type
20
+ if norm_type == 'bn':
21
+ self.norm = nn.BatchNorm2d(channels, affine=True)
22
+ elif norm_type == 'in':
23
+ self.norm = nn.InstanceNorm2d(channels, affine=False)
24
+ elif norm_type == 'gn':
25
+ self.norm = nn.GroupNorm(32, channels, affine=True)
26
+ elif norm_type == 'pixel':
27
+ self.norm = lambda x: F.normalize(x, p=2, dim=1)
28
+ elif norm_type == 'layer':
29
+ self.norm = nn.LayerNorm(normalize_shape)
30
+ elif norm_type == 'none':
31
+ self.norm = lambda x: x * 1.0
32
+ else:
33
+ assert 1 == 0, f'Norm type {norm_type} not support.'
34
+
35
+ def forward(self, x, ref=None):
36
+ if self.norm_type == 'spade':
37
+ return self.norm(x, ref)
38
+ else:
39
+ return self.norm(x)
40
+
41
+
42
+ class ReluLayer(nn.Module):
43
+ """Relu Layer.
44
+
45
+ Args:
46
+ relu type: type of relu layer, candidates are
47
+ - ReLU
48
+ - LeakyReLU: default relu slope 0.2
49
+ - PRelu
50
+ - SELU
51
+ - none: direct pass
52
+ """
53
+
54
+ def __init__(self, channels, relu_type='relu'):
55
+ super(ReluLayer, self).__init__()
56
+ relu_type = relu_type.lower()
57
+ if relu_type == 'relu':
58
+ self.func = nn.ReLU(True)
59
+ elif relu_type == 'leakyrelu':
60
+ self.func = nn.LeakyReLU(0.2, inplace=True)
61
+ elif relu_type == 'prelu':
62
+ self.func = nn.PReLU(channels)
63
+ elif relu_type == 'selu':
64
+ self.func = nn.SELU(True)
65
+ elif relu_type == 'none':
66
+ self.func = lambda x: x * 1.0
67
+ else:
68
+ assert 1 == 0, f'Relu type {relu_type} not support.'
69
+
70
+ def forward(self, x):
71
+ return self.func(x)
72
+
73
+
74
+ class ConvLayer(nn.Module):
75
+
76
+ def __init__(self,
77
+ in_channels,
78
+ out_channels,
79
+ kernel_size=3,
80
+ scale='none',
81
+ norm_type='none',
82
+ relu_type='none',
83
+ use_pad=True,
84
+ bias=True):
85
+ super(ConvLayer, self).__init__()
86
+ self.use_pad = use_pad
87
+ self.norm_type = norm_type
88
+ if norm_type in ['bn']:
89
+ bias = False
90
+
91
+ stride = 2 if scale == 'down' else 1
92
+
93
+ self.scale_func = lambda x: x
94
+ if scale == 'up':
95
+ self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')
96
+
97
+ self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
98
+ self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
99
+
100
+ self.relu = ReluLayer(out_channels, relu_type)
101
+ self.norm = NormLayer(out_channels, norm_type=norm_type)
102
+
103
+ def forward(self, x):
104
+ out = self.scale_func(x)
105
+ if self.use_pad:
106
+ out = self.reflection_pad(out)
107
+ out = self.conv2d(out)
108
+ out = self.norm(out)
109
+ out = self.relu(out)
110
+ return out
111
+
112
+
113
+ class ResidualBlock(nn.Module):
114
+ """
115
+ Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
116
+ """
117
+
118
+ def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
119
+ super(ResidualBlock, self).__init__()
120
+
121
+ if scale == 'none' and c_in == c_out:
122
+ self.shortcut_func = lambda x: x
123
+ else:
124
+ self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)
125
+
126
+ scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
127
+ scale_conf = scale_config_dict[scale]
128
+
129
+ self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
130
+ self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')
131
+
132
+ def forward(self, x):
133
+ identity = self.shortcut_func(x)
134
+
135
+ res = self.conv1(x)
136
+ res = self.conv2(res)
137
+ return identity + res
138
+
139
+
140
+ class ParseNet(nn.Module):
141
+
142
+ def __init__(self,
143
+ in_size=128,
144
+ out_size=128,
145
+ min_feat_size=32,
146
+ base_ch=64,
147
+ parsing_ch=19,
148
+ res_depth=10,
149
+ relu_type='LeakyReLU',
150
+ norm_type='bn',
151
+ ch_range=[32, 256]):
152
+ super().__init__()
153
+ self.res_depth = res_depth
154
+ act_args = {'norm_type': norm_type, 'relu_type': relu_type}
155
+ min_ch, max_ch = ch_range
156
+
157
+ ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731
158
+ min_feat_size = min(in_size, min_feat_size)
159
+
160
+ down_steps = int(np.log2(in_size // min_feat_size))
161
+ up_steps = int(np.log2(out_size // min_feat_size))
162
+
163
+ # =============== define encoder-body-decoder ====================
164
+ self.encoder = []
165
+ self.encoder.append(ConvLayer(3, base_ch, 3, 1))
166
+ head_ch = base_ch
167
+ for i in range(down_steps):
168
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
169
+ self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
170
+ head_ch = head_ch * 2
171
+
172
+ self.body = []
173
+ for i in range(res_depth):
174
+ self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))
175
+
176
+ self.decoder = []
177
+ for i in range(up_steps):
178
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
179
+ self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
180
+ head_ch = head_ch // 2
181
+
182
+ self.encoder = nn.Sequential(*self.encoder)
183
+ self.body = nn.Sequential(*self.body)
184
+ self.decoder = nn.Sequential(*self.decoder)
185
+ self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
186
+ self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)
187
+
188
+ def forward(self, x):
189
+ feat = self.encoder(x)
190
+ x = feat + self.body(feat)
191
+ x = self.decoder(x)
192
+ out_img = self.out_img_conv(x)
193
+ out_mask = self.out_mask_conv(x)
194
+ return out_mask, out_img
extras/facexlib/parsing/resnet.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+
4
+
5
+ def conv3x3(in_planes, out_planes, stride=1):
6
+ """3x3 convolution with padding"""
7
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
8
+
9
+
10
+ class BasicBlock(nn.Module):
11
+
12
+ def __init__(self, in_chan, out_chan, stride=1):
13
+ super(BasicBlock, self).__init__()
14
+ self.conv1 = conv3x3(in_chan, out_chan, stride)
15
+ self.bn1 = nn.BatchNorm2d(out_chan)
16
+ self.conv2 = conv3x3(out_chan, out_chan)
17
+ self.bn2 = nn.BatchNorm2d(out_chan)
18
+ self.relu = nn.ReLU(inplace=True)
19
+ self.downsample = None
20
+ if in_chan != out_chan or stride != 1:
21
+ self.downsample = nn.Sequential(
22
+ nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
23
+ nn.BatchNorm2d(out_chan),
24
+ )
25
+
26
+ def forward(self, x):
27
+ residual = self.conv1(x)
28
+ residual = F.relu(self.bn1(residual))
29
+ residual = self.conv2(residual)
30
+ residual = self.bn2(residual)
31
+
32
+ shortcut = x
33
+ if self.downsample is not None:
34
+ shortcut = self.downsample(x)
35
+
36
+ out = shortcut + residual
37
+ out = self.relu(out)
38
+ return out
39
+
40
+
41
+ def create_layer_basic(in_chan, out_chan, bnum, stride=1):
42
+ layers = [BasicBlock(in_chan, out_chan, stride=stride)]
43
+ for i in range(bnum - 1):
44
+ layers.append(BasicBlock(out_chan, out_chan, stride=1))
45
+ return nn.Sequential(*layers)
46
+
47
+
48
+ class ResNet18(nn.Module):
49
+
50
+ def __init__(self):
51
+ super(ResNet18, self).__init__()
52
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
53
+ self.bn1 = nn.BatchNorm2d(64)
54
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
55
+ self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
56
+ self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
57
+ self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
58
+ self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
59
+
60
+ def forward(self, x):
61
+ x = self.conv1(x)
62
+ x = F.relu(self.bn1(x))
63
+ x = self.maxpool(x)
64
+
65
+ x = self.layer1(x)
66
+ feat8 = self.layer2(x) # 1/8
67
+ feat16 = self.layer3(feat8) # 1/16
68
+ feat32 = self.layer4(feat16) # 1/32
69
+ return feat8, feat16, feat32
extras/facexlib/utils/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
2
+ from .misc import img2tensor, load_file_from_url, scandir
3
+
4
+ __all__ = [
5
+ 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', 'paste_face_back',
6
+ 'img2tensor', 'scandir'
7
+ ]
extras/facexlib/utils/face_restoration_helper.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import torch
5
+ from torchvision.transforms.functional import normalize
6
+
7
+ from extras.facexlib.detection import init_detection_model
8
+ from extras.facexlib.parsing import init_parsing_model
9
+ from extras.facexlib.utils.misc import img2tensor, imwrite
10
+
11
+
12
+ def get_largest_face(det_faces, h, w):
13
+
14
+ def get_location(val, length):
15
+ if val < 0:
16
+ return 0
17
+ elif val > length:
18
+ return length
19
+ else:
20
+ return val
21
+
22
+ face_areas = []
23
+ for det_face in det_faces:
24
+ left = get_location(det_face[0], w)
25
+ right = get_location(det_face[2], w)
26
+ top = get_location(det_face[1], h)
27
+ bottom = get_location(det_face[3], h)
28
+ face_area = (right - left) * (bottom - top)
29
+ face_areas.append(face_area)
30
+ largest_idx = face_areas.index(max(face_areas))
31
+ return det_faces[largest_idx], largest_idx
32
+
33
+
34
+ def get_center_face(det_faces, h=0, w=0, center=None):
35
+ if center is not None:
36
+ center = np.array(center)
37
+ else:
38
+ center = np.array([w / 2, h / 2])
39
+ center_dist = []
40
+ for det_face in det_faces:
41
+ face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
42
+ dist = np.linalg.norm(face_center - center)
43
+ center_dist.append(dist)
44
+ center_idx = center_dist.index(min(center_dist))
45
+ return det_faces[center_idx], center_idx
46
+
47
+
48
+ class FaceRestoreHelper(object):
49
+ """Helper for the face restoration pipeline (base class)."""
50
+
51
+ def __init__(self,
52
+ upscale_factor,
53
+ face_size=512,
54
+ crop_ratio=(1, 1),
55
+ det_model='retinaface_resnet50',
56
+ save_ext='png',
57
+ template_3points=False,
58
+ pad_blur=False,
59
+ use_parse=False,
60
+ device=None,
61
+ model_rootpath=None):
62
+ self.template_3points = template_3points # improve robustness
63
+ self.upscale_factor = upscale_factor
64
+ # the cropped face ratio based on the square face
65
+ self.crop_ratio = crop_ratio # (h, w)
66
+ assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
67
+ self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
68
+
69
+ if self.template_3points:
70
+ self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
71
+ else:
72
+ # standard 5 landmarks for FFHQ faces with 512 x 512
73
+ self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
74
+ [201.26117, 371.41043], [313.08905, 371.15118]])
75
+ self.face_template = self.face_template * (face_size / 512.0)
76
+ if self.crop_ratio[0] > 1:
77
+ self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
78
+ if self.crop_ratio[1] > 1:
79
+ self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
80
+ self.save_ext = save_ext
81
+ self.pad_blur = pad_blur
82
+ if self.pad_blur is True:
83
+ self.template_3points = False
84
+
85
+ self.all_landmarks_5 = []
86
+ self.det_faces = []
87
+ self.affine_matrices = []
88
+ self.inverse_affine_matrices = []
89
+ self.cropped_faces = []
90
+ self.restored_faces = []
91
+ self.pad_input_imgs = []
92
+
93
+ if device is None:
94
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
95
+ else:
96
+ self.device = device
97
+
98
+ # init face detection model
99
+ self.face_det = init_detection_model(det_model, half=False, device=self.device, model_rootpath=model_rootpath)
100
+
101
+ # init face parsing model
102
+ self.use_parse = use_parse
103
+ self.face_parse = init_parsing_model(model_name='parsenet', device=self.device, model_rootpath=model_rootpath)
104
+
105
+ def set_upscale_factor(self, upscale_factor):
106
+ self.upscale_factor = upscale_factor
107
+
108
+ def read_image(self, img):
109
+ """img can be image path or cv2 loaded image."""
110
+ # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
111
+ if isinstance(img, str):
112
+ img = cv2.imread(img)
113
+
114
+ if np.max(img) > 256: # 16-bit image
115
+ img = img / 65535 * 255
116
+ if len(img.shape) == 2: # gray image
117
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
118
+ elif img.shape[2] == 4: # RGBA image with alpha channel
119
+ img = img[:, :, 0:3]
120
+
121
+ self.input_img = img
122
+
123
+ def get_face_landmarks_5(self,
124
+ only_keep_largest=False,
125
+ only_center_face=False,
126
+ resize=None,
127
+ blur_ratio=0.01,
128
+ eye_dist_threshold=None):
129
+ if resize is None:
130
+ scale = 1
131
+ input_img = self.input_img
132
+ else:
133
+ h, w = self.input_img.shape[0:2]
134
+ scale = min(h, w) / resize
135
+ h, w = int(h / scale), int(w / scale)
136
+ input_img = cv2.resize(self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4)
137
+
138
+ with torch.no_grad():
139
+ bboxes = self.face_det.detect_faces(input_img, 0.97) * scale
140
+ for bbox in bboxes:
141
+ # remove faces with too small eye distance: side faces or too small faces
142
+ eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]])
143
+ if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
144
+ continue
145
+
146
+ if self.template_3points:
147
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
148
+ else:
149
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
150
+ self.all_landmarks_5.append(landmark)
151
+ self.det_faces.append(bbox[0:5])
152
+ if len(self.det_faces) == 0:
153
+ return 0
154
+ if only_keep_largest:
155
+ h, w, _ = self.input_img.shape
156
+ self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
157
+ self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
158
+ elif only_center_face:
159
+ h, w, _ = self.input_img.shape
160
+ self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
161
+ self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
162
+
163
+ # pad blurry images
164
+ if self.pad_blur:
165
+ self.pad_input_imgs = []
166
+ for landmarks in self.all_landmarks_5:
167
+ # get landmarks
168
+ eye_left = landmarks[0, :]
169
+ eye_right = landmarks[1, :]
170
+ eye_avg = (eye_left + eye_right) * 0.5
171
+ mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
172
+ eye_to_eye = eye_right - eye_left
173
+ eye_to_mouth = mouth_avg - eye_avg
174
+
175
+ # Get the oriented crop rectangle
176
+ # x: half width of the oriented crop rectangle
177
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
178
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
179
+ # norm with the hypotenuse: get the direction
180
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
181
+ rect_scale = 1.5
182
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
183
+ # y: half height of the oriented crop rectangle
184
+ y = np.flipud(x) * [-1, 1]
185
+
186
+ # c: center
187
+ c = eye_avg + eye_to_mouth * 0.1
188
+ # quad: (left_top, left_bottom, right_bottom, right_top)
189
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
190
+ # qsize: side length of the square
191
+ qsize = np.hypot(*x) * 2
192
+ border = max(int(np.rint(qsize * 0.1)), 3)
193
+
194
+ # get pad
195
+ # pad: (width_left, height_top, width_right, height_bottom)
196
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
197
+ int(np.ceil(max(quad[:, 1]))))
198
+ pad = [
199
+ max(-pad[0] + border, 1),
200
+ max(-pad[1] + border, 1),
201
+ max(pad[2] - self.input_img.shape[0] + border, 1),
202
+ max(pad[3] - self.input_img.shape[1] + border, 1)
203
+ ]
204
+
205
+ if max(pad) > 1:
206
+ # pad image
207
+ pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
208
+ # modify landmark coords
209
+ landmarks[:, 0] += pad[0]
210
+ landmarks[:, 1] += pad[1]
211
+ # blur pad images
212
+ h, w, _ = pad_img.shape
213
+ y, x, _ = np.ogrid[:h, :w, :1]
214
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
215
+ np.float32(w - 1 - x) / pad[2]),
216
+ 1.0 - np.minimum(np.float32(y) / pad[1],
217
+ np.float32(h - 1 - y) / pad[3]))
218
+ blur = int(qsize * blur_ratio)
219
+ if blur % 2 == 0:
220
+ blur += 1
221
+ blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
222
+ # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
223
+
224
+ pad_img = pad_img.astype('float32')
225
+ pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
226
+ pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
227
+ pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
228
+ self.pad_input_imgs.append(pad_img)
229
+ else:
230
+ self.pad_input_imgs.append(np.copy(self.input_img))
231
+
232
+ return len(self.all_landmarks_5)
233
+
234
+ def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
235
+ """Align and warp faces with face template.
236
+ """
237
+ if self.pad_blur:
238
+ assert len(self.pad_input_imgs) == len(
239
+ self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
240
+ for idx, landmark in enumerate(self.all_landmarks_5):
241
+ # use 5 landmarks to get affine matrix
242
+ # use cv2.LMEDS method for the equivalence to skimage transform
243
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
244
+ affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
245
+ self.affine_matrices.append(affine_matrix)
246
+ # warp and crop faces
247
+ if border_mode == 'constant':
248
+ border_mode = cv2.BORDER_CONSTANT
249
+ elif border_mode == 'reflect101':
250
+ border_mode = cv2.BORDER_REFLECT101
251
+ elif border_mode == 'reflect':
252
+ border_mode = cv2.BORDER_REFLECT
253
+ if self.pad_blur:
254
+ input_img = self.pad_input_imgs[idx]
255
+ else:
256
+ input_img = self.input_img
257
+ cropped_face = cv2.warpAffine(
258
+ input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
259
+ self.cropped_faces.append(cropped_face)
260
+ # save the cropped face
261
+ if save_cropped_path is not None:
262
+ path = os.path.splitext(save_cropped_path)[0]
263
+ save_path = f'{path}_{idx:02d}.{self.save_ext}'
264
+ imwrite(cropped_face, save_path)
265
+
266
+ def get_inverse_affine(self, save_inverse_affine_path=None):
267
+ """Get inverse affine matrix."""
268
+ for idx, affine_matrix in enumerate(self.affine_matrices):
269
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
270
+ inverse_affine *= self.upscale_factor
271
+ self.inverse_affine_matrices.append(inverse_affine)
272
+ # save inverse affine matrices
273
+ if save_inverse_affine_path is not None:
274
+ path, _ = os.path.splitext(save_inverse_affine_path)
275
+ save_path = f'{path}_{idx:02d}.pth'
276
+ torch.save(inverse_affine, save_path)
277
+
278
+ def add_restored_face(self, face):
279
+ self.restored_faces.append(face)
280
+
281
+ def paste_faces_to_input_image(self, save_path=None, upsample_img=None):
282
+ h, w, _ = self.input_img.shape
283
+ h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
284
+
285
+ if upsample_img is None:
286
+ # simply resize the background
287
+ upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
288
+ else:
289
+ upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
290
+
291
+ assert len(self.restored_faces) == len(
292
+ self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
293
+ for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
294
+ # Add an offset to inverse affine matrix, for more precise back alignment
295
+ if self.upscale_factor > 1:
296
+ extra_offset = 0.5 * self.upscale_factor
297
+ else:
298
+ extra_offset = 0
299
+ inverse_affine[:, 2] += extra_offset
300
+ inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
301
+
302
+ if self.use_parse:
303
+ # inference
304
+ face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
305
+ face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
306
+ normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
307
+ face_input = torch.unsqueeze(face_input, 0).to(self.device)
308
+ with torch.no_grad():
309
+ out = self.face_parse(face_input)[0]
310
+ out = out.argmax(dim=1).squeeze().cpu().numpy()
311
+
312
+ mask = np.zeros(out.shape)
313
+ MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
314
+ for idx, color in enumerate(MASK_COLORMAP):
315
+ mask[out == idx] = color
316
+ # blur the mask
317
+ mask = cv2.GaussianBlur(mask, (101, 101), 11)
318
+ mask = cv2.GaussianBlur(mask, (101, 101), 11)
319
+ # remove the black borders
320
+ thres = 10
321
+ mask[:thres, :] = 0
322
+ mask[-thres:, :] = 0
323
+ mask[:, :thres] = 0
324
+ mask[:, -thres:] = 0
325
+ mask = mask / 255.
326
+
327
+ mask = cv2.resize(mask, restored_face.shape[:2])
328
+ mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3)
329
+ inv_soft_mask = mask[:, :, None]
330
+ pasted_face = inv_restored
331
+
332
+ else: # use square parse maps
333
+ mask = np.ones(self.face_size, dtype=np.float32)
334
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
335
+ # remove the black borders
336
+ inv_mask_erosion = cv2.erode(
337
+ inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
338
+ pasted_face = inv_mask_erosion[:, :, None] * inv_restored
339
+ total_face_area = np.sum(inv_mask_erosion) # // 3
340
+ # compute the fusion edge based on the area of face
341
+ w_edge = int(total_face_area**0.5) // 20
342
+ erosion_radius = w_edge * 2
343
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
344
+ blur_size = w_edge * 2
345
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
346
+ if len(upsample_img.shape) == 2: # upsample_img is gray image
347
+ upsample_img = upsample_img[:, :, None]
348
+ inv_soft_mask = inv_soft_mask[:, :, None]
349
+
350
+ if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
351
+ alpha = upsample_img[:, :, 3:]
352
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
353
+ upsample_img = np.concatenate((upsample_img, alpha), axis=2)
354
+ else:
355
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
356
+
357
+ if np.max(upsample_img) > 256: # 16-bit image
358
+ upsample_img = upsample_img.astype(np.uint16)
359
+ else:
360
+ upsample_img = upsample_img.astype(np.uint8)
361
+ if save_path is not None:
362
+ path = os.path.splitext(save_path)[0]
363
+ save_path = f'{path}.{self.save_ext}'
364
+ imwrite(upsample_img, save_path)
365
+ return upsample_img
366
+
367
+ def clean_all(self):
368
+ self.all_landmarks_5 = []
369
+ self.restored_faces = []
370
+ self.affine_matrices = []
371
+ self.cropped_faces = []
372
+ self.inverse_affine_matrices = []
373
+ self.det_faces = []
374
+ self.pad_input_imgs = []
extras/facexlib/utils/face_utils.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+
5
+
6
+ def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
7
+ left, top, right, bot = bbox
8
+ width = right - left
9
+ height = bot - top
10
+
11
+ if preserve_aspect:
12
+ width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
13
+ height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
14
+ else:
15
+ width_increase = height_increase = increase_area
16
+ left = int(left - width_increase * width)
17
+ top = int(top - height_increase * height)
18
+ right = int(right + width_increase * width)
19
+ bot = int(bot + height_increase * height)
20
+ return (left, top, right, bot)
21
+
22
+
23
+ def get_valid_bboxes(bboxes, h, w):
24
+ left = max(bboxes[0], 0)
25
+ top = max(bboxes[1], 0)
26
+ right = min(bboxes[2], w)
27
+ bottom = min(bboxes[3], h)
28
+ return (left, top, right, bottom)
29
+
30
+
31
+ def align_crop_face_landmarks(img,
32
+ landmarks,
33
+ output_size,
34
+ transform_size=None,
35
+ enable_padding=True,
36
+ return_inverse_affine=False,
37
+ shrink_ratio=(1, 1)):
38
+ """Align and crop face with landmarks.
39
+
40
+ The output_size and transform_size are based on width. The height is
41
+ adjusted based on shrink_ratio_h/shring_ration_w.
42
+
43
+ Modified from:
44
+ https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py
45
+
46
+ Args:
47
+ img (Numpy array): Input image.
48
+ landmarks (Numpy array): 5 or 68 or 98 landmarks.
49
+ output_size (int): Output face size.
50
+ transform_size (ing): Transform size. Usually the four time of
51
+ output_size.
52
+ enable_padding (float): Default: True.
53
+ shrink_ratio (float | tuple[float] | list[float]): Shring the whole
54
+ face for height and width (crop larger area). Default: (1, 1).
55
+
56
+ Returns:
57
+ (Numpy array): Cropped face.
58
+ """
59
+ lm_type = 'retinaface_5' # Options: dlib_5, retinaface_5
60
+
61
+ if isinstance(shrink_ratio, (float, int)):
62
+ shrink_ratio = (shrink_ratio, shrink_ratio)
63
+ if transform_size is None:
64
+ transform_size = output_size * 4
65
+
66
+ # Parse landmarks
67
+ lm = np.array(landmarks)
68
+ if lm.shape[0] == 5 and lm_type == 'retinaface_5':
69
+ eye_left = lm[0]
70
+ eye_right = lm[1]
71
+ mouth_avg = (lm[3] + lm[4]) * 0.5
72
+ elif lm.shape[0] == 5 and lm_type == 'dlib_5':
73
+ lm_eye_left = lm[2:4]
74
+ lm_eye_right = lm[0:2]
75
+ eye_left = np.mean(lm_eye_left, axis=0)
76
+ eye_right = np.mean(lm_eye_right, axis=0)
77
+ mouth_avg = lm[4]
78
+ elif lm.shape[0] == 68:
79
+ lm_eye_left = lm[36:42]
80
+ lm_eye_right = lm[42:48]
81
+ eye_left = np.mean(lm_eye_left, axis=0)
82
+ eye_right = np.mean(lm_eye_right, axis=0)
83
+ mouth_avg = (lm[48] + lm[54]) * 0.5
84
+ elif lm.shape[0] == 98:
85
+ lm_eye_left = lm[60:68]
86
+ lm_eye_right = lm[68:76]
87
+ eye_left = np.mean(lm_eye_left, axis=0)
88
+ eye_right = np.mean(lm_eye_right, axis=0)
89
+ mouth_avg = (lm[76] + lm[82]) * 0.5
90
+
91
+ eye_avg = (eye_left + eye_right) * 0.5
92
+ eye_to_eye = eye_right - eye_left
93
+ eye_to_mouth = mouth_avg - eye_avg
94
+
95
+ # Get the oriented crop rectangle
96
+ # x: half width of the oriented crop rectangle
97
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
98
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
99
+ # norm with the hypotenuse: get the direction
100
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
101
+ rect_scale = 1 # TODO: you can edit it to get larger rect
102
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
103
+ # y: half height of the oriented crop rectangle
104
+ y = np.flipud(x) * [-1, 1]
105
+
106
+ x *= shrink_ratio[1] # width
107
+ y *= shrink_ratio[0] # height
108
+
109
+ # c: center
110
+ c = eye_avg + eye_to_mouth * 0.1
111
+ # quad: (left_top, left_bottom, right_bottom, right_top)
112
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
113
+ # qsize: side length of the square
114
+ qsize = np.hypot(*x) * 2
115
+
116
+ quad_ori = np.copy(quad)
117
+ # Shrink, for large face
118
+ # TODO: do we really need shrink
119
+ shrink = int(np.floor(qsize / output_size * 0.5))
120
+ if shrink > 1:
121
+ h, w = img.shape[0:2]
122
+ rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
123
+ img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
124
+ quad /= shrink
125
+ qsize /= shrink
126
+
127
+ # Crop
128
+ h, w = img.shape[0:2]
129
+ border = max(int(np.rint(qsize * 0.1)), 3)
130
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
131
+ int(np.ceil(max(quad[:, 1]))))
132
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
133
+ if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
134
+ img = img[crop[1]:crop[3], crop[0]:crop[2], :]
135
+ quad -= crop[0:2]
136
+
137
+ # Pad
138
+ # pad: (width_left, height_top, width_right, height_bottom)
139
+ h, w = img.shape[0:2]
140
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
141
+ int(np.ceil(max(quad[:, 1]))))
142
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
143
+ if enable_padding and max(pad) > border - 4:
144
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
145
+ img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
146
+ h, w = img.shape[0:2]
147
+ y, x, _ = np.ogrid[:h, :w, :1]
148
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
149
+ np.float32(w - 1 - x) / pad[2]),
150
+ 1.0 - np.minimum(np.float32(y) / pad[1],
151
+ np.float32(h - 1 - y) / pad[3]))
152
+ blur = int(qsize * 0.02)
153
+ if blur % 2 == 0:
154
+ blur += 1
155
+ blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))
156
+
157
+ img = img.astype('float32')
158
+ img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
159
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
160
+ img = np.clip(img, 0, 255) # float32, [0, 255]
161
+ quad += pad[:2]
162
+
163
+ # Transform use cv2
164
+ h_ratio = shrink_ratio[0] / shrink_ratio[1]
165
+ dst_h, dst_w = int(transform_size * h_ratio), transform_size
166
+ template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
167
+ # use cv2.LMEDS method for the equivalence to skimage transform
168
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
169
+ affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
170
+ cropped_face = cv2.warpAffine(
171
+ img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132)) # gray
172
+
173
+ if output_size < transform_size:
174
+ cropped_face = cv2.resize(
175
+ cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)
176
+
177
+ if return_inverse_affine:
178
+ dst_h, dst_w = int(output_size * h_ratio), output_size
179
+ template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
180
+ # use cv2.LMEDS method for the equivalence to skimage transform
181
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
182
+ affine_matrix = cv2.estimateAffinePartial2D(
183
+ quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
184
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
185
+ else:
186
+ inverse_affine = None
187
+ return cropped_face, inverse_affine
188
+
189
+
190
+ def paste_face_back(img, face, inverse_affine):
191
+ h, w = img.shape[0:2]
192
+ face_h, face_w = face.shape[0:2]
193
+ inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
194
+ mask = np.ones((face_h, face_w, 3), dtype=np.float32)
195
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
196
+ # remove the black borders
197
+ inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
198
+ inv_restored_remove_border = inv_mask_erosion * inv_restored
199
+ total_face_area = np.sum(inv_mask_erosion) // 3
200
+ # compute the fusion edge based on the area of face
201
+ w_edge = int(total_face_area**0.5) // 20
202
+ erosion_radius = w_edge * 2
203
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
204
+ blur_size = w_edge * 2
205
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
206
+ img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
207
+ # float32, [0, 255]
208
+ return img
209
+
210
+
211
+ if __name__ == '__main__':
212
+ import os
213
+
214
+ from extras.facexlib.detection import init_detection_model
215
+ from extras.facexlib.utils.face_restoration_helper import get_largest_face
216
+ from extras.facexlib.visualization import visualize_detection
217
+
218
+ img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
219
+ img_name = os.splitext(os.path.basename(img_path))[0]
220
+
221
+ # initialize model
222
+ det_net = init_detection_model('retinaface_resnet50', half=False)
223
+ img_ori = cv2.imread(img_path)
224
+ h, w = img_ori.shape[0:2]
225
+ # if larger than 800, scale it
226
+ scale = max(h / 800, w / 800)
227
+ if scale > 1:
228
+ img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)
229
+
230
+ with torch.no_grad():
231
+ bboxes = det_net.detect_faces(img, 0.97)
232
+ if scale > 1:
233
+ bboxes *= scale # the score is incorrect
234
+ bboxes = get_largest_face(bboxes, h, w)[0]
235
+ visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png')
236
+
237
+ landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])
238
+
239
+ cropped_face, inverse_affine = align_crop_face_landmarks(
240
+ img_ori,
241
+ landmarks,
242
+ output_size=512,
243
+ transform_size=None,
244
+ enable_padding=True,
245
+ return_inverse_affine=True,
246
+ shrink_ratio=(1, 1))
247
+
248
+ cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
249
+ img = paste_face_back(img_ori, cropped_face, inverse_affine)
250
+ cv2.imwrite(f'tmp/{img_name}_back.png', img)
extras/facexlib/utils/misc.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import os
3
+ import os.path as osp
4
+ import torch
5
+ from torch.hub import download_url_to_file, get_dir
6
+ from urllib.parse import urlparse
7
+
8
+ ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
9
+
10
+
11
+ def imwrite(img, file_path, params=None, auto_mkdir=True):
12
+ """Write image to file.
13
+
14
+ Args:
15
+ img (ndarray): Image array to be written.
16
+ file_path (str): Image file path.
17
+ params (None or list): Same as opencv's :func:`imwrite` interface.
18
+ auto_mkdir (bool): If the parent folder of `file_path` does not exist,
19
+ whether to create it automatically.
20
+
21
+ Returns:
22
+ bool: Successful or not.
23
+ """
24
+ if auto_mkdir:
25
+ dir_name = os.path.abspath(os.path.dirname(file_path))
26
+ os.makedirs(dir_name, exist_ok=True)
27
+ return cv2.imwrite(file_path, img, params)
28
+
29
+
30
+ def img2tensor(imgs, bgr2rgb=True, float32=True):
31
+ """Numpy array to tensor.
32
+
33
+ Args:
34
+ imgs (list[ndarray] | ndarray): Input images.
35
+ bgr2rgb (bool): Whether to change bgr to rgb.
36
+ float32 (bool): Whether to change to float32.
37
+
38
+ Returns:
39
+ list[tensor] | tensor: Tensor images. If returned results only have
40
+ one element, just return tensor.
41
+ """
42
+
43
+ def _totensor(img, bgr2rgb, float32):
44
+ if img.shape[2] == 3 and bgr2rgb:
45
+ if img.dtype == 'float64':
46
+ img = img.astype('float32')
47
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
48
+ img = torch.from_numpy(img.transpose(2, 0, 1))
49
+ if float32:
50
+ img = img.float()
51
+ return img
52
+
53
+ if isinstance(imgs, list):
54
+ return [_totensor(img, bgr2rgb, float32) for img in imgs]
55
+ else:
56
+ return _totensor(imgs, bgr2rgb, float32)
57
+
58
+
59
+ def load_file_from_url(url, model_dir=None, progress=True, file_name=None, save_dir=None):
60
+ """Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py
61
+ """
62
+ if model_dir is None:
63
+ hub_dir = get_dir()
64
+ model_dir = os.path.join(hub_dir, 'checkpoints')
65
+
66
+ if save_dir is None:
67
+ save_dir = os.path.join(ROOT_DIR, model_dir)
68
+ os.makedirs(save_dir, exist_ok=True)
69
+
70
+ parts = urlparse(url)
71
+ filename = os.path.basename(parts.path)
72
+ if file_name is not None:
73
+ filename = file_name
74
+ cached_file = os.path.abspath(os.path.join(save_dir, filename))
75
+ if not os.path.exists(cached_file):
76
+ print(f'Downloading: "{url}" to {cached_file}\n')
77
+ download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
78
+ return cached_file
79
+
80
+
81
+ def scandir(dir_path, suffix=None, recursive=False, full_path=False):
82
+ """Scan a directory to find the interested files.
83
+ Args:
84
+ dir_path (str): Path of the directory.
85
+ suffix (str | tuple(str), optional): File suffix that we are
86
+ interested in. Default: None.
87
+ recursive (bool, optional): If set to True, recursively scan the
88
+ directory. Default: False.
89
+ full_path (bool, optional): If set to True, include the dir_path.
90
+ Default: False.
91
+ Returns:
92
+ A generator for all the interested files with relative paths.
93
+ """
94
+
95
+ if (suffix is not None) and not isinstance(suffix, (str, tuple)):
96
+ raise TypeError('"suffix" must be a string or tuple of strings')
97
+
98
+ root = dir_path
99
+
100
+ def _scandir(dir_path, suffix, recursive):
101
+ for entry in os.scandir(dir_path):
102
+ if not entry.name.startswith('.') and entry.is_file():
103
+ if full_path:
104
+ return_path = entry.path
105
+ else:
106
+ return_path = osp.relpath(entry.path, root)
107
+
108
+ if suffix is None:
109
+ yield return_path
110
+ elif return_path.endswith(suffix):
111
+ yield return_path
112
+ else:
113
+ if recursive:
114
+ yield from _scandir(entry.path, suffix=suffix, recursive=recursive)
115
+ else:
116
+ continue
117
+
118
+ return _scandir(dir_path, suffix=suffix, recursive=recursive)
extras/interrogate.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import ldm_patched.modules.model_management as model_management
4
+
5
+ from torchvision import transforms
6
+ from torchvision.transforms.functional import InterpolationMode
7
+ from modules.model_loader import load_file_from_url
8
+ from modules.config import path_clip_vision
9
+ from ldm_patched.modules.model_patcher import ModelPatcher
10
+ from extras.BLIP.models.blip import blip_decoder
11
+
12
+
13
+ blip_image_eval_size = 384
14
+ blip_repo_root = os.path.join(os.path.dirname(__file__), 'BLIP')
15
+
16
+
17
+ class Interrogator:
18
+ def __init__(self):
19
+ self.blip_model = None
20
+ self.load_device = torch.device('cpu')
21
+ self.offload_device = torch.device('cpu')
22
+ self.dtype = torch.float32
23
+
24
+ @torch.no_grad()
25
+ @torch.inference_mode()
26
+ def interrogate(self, img_rgb):
27
+ if self.blip_model is None:
28
+ filename = load_file_from_url(
29
+ url='https://huggingface.co/lllyasviel/misc/resolve/main/model_base_caption_capfilt_large.pth',
30
+ model_dir=path_clip_vision,
31
+ file_name='model_base_caption_capfilt_large.pth',
32
+ )
33
+
34
+ model = blip_decoder(pretrained=filename, image_size=blip_image_eval_size, vit='base',
35
+ med_config=os.path.join(blip_repo_root, "configs", "med_config.json"))
36
+ model.eval()
37
+
38
+ self.load_device = model_management.text_encoder_device()
39
+ self.offload_device = model_management.text_encoder_offload_device()
40
+ self.dtype = torch.float32
41
+
42
+ model.to(self.offload_device)
43
+
44
+ if model_management.should_use_fp16(device=self.load_device):
45
+ model.half()
46
+ self.dtype = torch.float16
47
+
48
+ self.blip_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device)
49
+
50
+ model_management.load_model_gpu(self.blip_model)
51
+
52
+ gpu_image = transforms.Compose([
53
+ transforms.ToTensor(),
54
+ transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
55
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
56
+ ])(img_rgb).unsqueeze(0).to(device=self.load_device, dtype=self.dtype)
57
+
58
+ caption = self.blip_model.model.generate(gpu_image, sample=True, num_beams=1, max_length=75)[0]
59
+
60
+ return caption
61
+
62
+
63
+ default_interrogator = Interrogator().interrogate
extras/ip_adapter.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import ldm_patched.modules.clip_vision
3
+ import safetensors.torch as sf
4
+ import ldm_patched.modules.model_management as model_management
5
+ import ldm_patched.ldm.modules.attention as attention
6
+
7
+ from extras.resampler import Resampler
8
+ from ldm_patched.modules.model_patcher import ModelPatcher
9
+ from modules.core import numpy_to_pytorch
10
+ from modules.ops import use_patched_ops
11
+ from ldm_patched.modules.ops import manual_cast
12
+
13
+
14
+ SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
15
+ SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20
16
+
17
+
18
+ def sdp(q, k, v, extra_options):
19
+ return attention.optimized_attention(q, k, v, heads=extra_options["n_heads"], mask=None)
20
+
21
+
22
+ class ImageProjModel(torch.nn.Module):
23
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
24
+ super().__init__()
25
+
26
+ self.cross_attention_dim = cross_attention_dim
27
+ self.clip_extra_context_tokens = clip_extra_context_tokens
28
+ self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
29
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
30
+
31
+ def forward(self, image_embeds):
32
+ embeds = image_embeds
33
+ clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens,
34
+ self.cross_attention_dim)
35
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
36
+ return clip_extra_context_tokens
37
+
38
+
39
+ class To_KV(torch.nn.Module):
40
+ def __init__(self, cross_attention_dim):
41
+ super().__init__()
42
+
43
+ channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
44
+ self.to_kvs = torch.nn.ModuleList(
45
+ [torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])
46
+
47
+ def load_state_dict_ordered(self, sd):
48
+ state_dict = []
49
+ for i in range(4096):
50
+ for k in ['k', 'v']:
51
+ key = f'{i}.to_{k}_ip.weight'
52
+ if key in sd:
53
+ state_dict.append(sd[key])
54
+ for i, v in enumerate(state_dict):
55
+ self.to_kvs[i].weight = torch.nn.Parameter(v, requires_grad=False)
56
+
57
+
58
+ class IPAdapterModel(torch.nn.Module):
59
+ def __init__(self, state_dict, plus, cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4,
60
+ sdxl_plus=False):
61
+ super().__init__()
62
+ self.plus = plus
63
+ if self.plus:
64
+ self.image_proj_model = Resampler(
65
+ dim=1280 if sdxl_plus else cross_attention_dim,
66
+ depth=4,
67
+ dim_head=64,
68
+ heads=20 if sdxl_plus else 12,
69
+ num_queries=clip_extra_context_tokens,
70
+ embedding_dim=clip_embeddings_dim,
71
+ output_dim=cross_attention_dim,
72
+ ff_mult=4
73
+ )
74
+ else:
75
+ self.image_proj_model = ImageProjModel(
76
+ cross_attention_dim=cross_attention_dim,
77
+ clip_embeddings_dim=clip_embeddings_dim,
78
+ clip_extra_context_tokens=clip_extra_context_tokens
79
+ )
80
+
81
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
82
+ self.ip_layers = To_KV(cross_attention_dim)
83
+ self.ip_layers.load_state_dict_ordered(state_dict["ip_adapter"])
84
+
85
+
86
+ clip_vision: ldm_patched.modules.clip_vision.ClipVisionModel = None
87
+ ip_negative: torch.Tensor = None
88
+ ip_adapters: dict = {}
89
+
90
+
91
+ def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path):
92
+ global clip_vision, ip_negative, ip_adapters
93
+
94
+ if clip_vision is None and isinstance(clip_vision_path, str):
95
+ clip_vision = ldm_patched.modules.clip_vision.load(clip_vision_path)
96
+
97
+ if ip_negative is None and isinstance(ip_negative_path, str):
98
+ ip_negative = sf.load_file(ip_negative_path)['data']
99
+
100
+ if not isinstance(ip_adapter_path, str) or ip_adapter_path in ip_adapters:
101
+ return
102
+
103
+ load_device = model_management.get_torch_device()
104
+ offload_device = torch.device('cpu')
105
+
106
+ use_fp16 = model_management.should_use_fp16(device=load_device)
107
+ ip_state_dict = torch.load(ip_adapter_path, map_location="cpu")
108
+ plus = "latents" in ip_state_dict["image_proj"]
109
+ cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
110
+ sdxl = cross_attention_dim == 2048
111
+ sdxl_plus = sdxl and plus
112
+
113
+ if plus:
114
+ clip_extra_context_tokens = ip_state_dict["image_proj"]["latents"].shape[1]
115
+ clip_embeddings_dim = ip_state_dict["image_proj"]["latents"].shape[2]
116
+ else:
117
+ clip_extra_context_tokens = ip_state_dict["image_proj"]["proj.weight"].shape[0] // cross_attention_dim
118
+ clip_embeddings_dim = None
119
+
120
+ with use_patched_ops(manual_cast):
121
+ ip_adapter = IPAdapterModel(
122
+ ip_state_dict,
123
+ plus=plus,
124
+ cross_attention_dim=cross_attention_dim,
125
+ clip_embeddings_dim=clip_embeddings_dim,
126
+ clip_extra_context_tokens=clip_extra_context_tokens,
127
+ sdxl_plus=sdxl_plus
128
+ )
129
+
130
+ ip_adapter.sdxl = sdxl
131
+ ip_adapter.load_device = load_device
132
+ ip_adapter.offload_device = offload_device
133
+ ip_adapter.dtype = torch.float16 if use_fp16 else torch.float32
134
+ ip_adapter.to(offload_device, dtype=ip_adapter.dtype)
135
+
136
+ image_proj_model = ModelPatcher(model=ip_adapter.image_proj_model, load_device=load_device,
137
+ offload_device=offload_device)
138
+ ip_layers = ModelPatcher(model=ip_adapter.ip_layers, load_device=load_device,
139
+ offload_device=offload_device)
140
+
141
+ ip_adapters[ip_adapter_path] = dict(
142
+ ip_adapter=ip_adapter,
143
+ image_proj_model=image_proj_model,
144
+ ip_layers=ip_layers,
145
+ ip_unconds=None
146
+ )
147
+
148
+ return
149
+
150
+
151
+ @torch.no_grad()
152
+ @torch.inference_mode()
153
+ def clip_preprocess(image):
154
+ mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
155
+ std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
156
+ image = image.movedim(-1, 1)
157
+
158
+ # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
159
+ B, C, H, W = image.shape
160
+ assert H == 224 and W == 224
161
+
162
+ return (image - mean) / std
163
+
164
+
165
+ @torch.no_grad()
166
+ @torch.inference_mode()
167
+ def preprocess(img, ip_adapter_path):
168
+ global ip_adapters
169
+ entry = ip_adapters[ip_adapter_path]
170
+
171
+ ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher)
172
+ pixel_values = clip_preprocess(numpy_to_pytorch(img).to(clip_vision.load_device))
173
+ outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True)
174
+
175
+ ip_adapter = entry['ip_adapter']
176
+ ip_layers = entry['ip_layers']
177
+ image_proj_model = entry['image_proj_model']
178
+ ip_unconds = entry['ip_unconds']
179
+
180
+ if ip_adapter.plus:
181
+ cond = outputs.hidden_states[-2]
182
+ else:
183
+ cond = outputs.image_embeds
184
+
185
+ cond = cond.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
186
+
187
+ ldm_patched.modules.model_management.load_model_gpu(image_proj_model)
188
+ cond = image_proj_model.model(cond).to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
189
+
190
+ ldm_patched.modules.model_management.load_model_gpu(ip_layers)
191
+
192
+ if ip_unconds is None:
193
+ uncond = ip_negative.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
194
+ ip_unconds = [m(uncond).cpu() for m in ip_layers.model.to_kvs]
195
+ entry['ip_unconds'] = ip_unconds
196
+
197
+ ip_conds = [m(cond).cpu() for m in ip_layers.model.to_kvs]
198
+
199
+ return ip_conds, ip_unconds
200
+
201
+
202
+ @torch.no_grad()
203
+ @torch.inference_mode()
204
+ def patch_model(model, tasks):
205
+ new_model = model.clone()
206
+
207
+ def make_attn_patcher(ip_index):
208
+ def patcher(n, context_attn2, value_attn2, extra_options):
209
+ org_dtype = n.dtype
210
+ current_step = float(model.model.diffusion_model.current_step.detach().cpu().numpy()[0])
211
+ cond_or_uncond = extra_options['cond_or_uncond']
212
+
213
+ q = n
214
+ k = [context_attn2]
215
+ v = [value_attn2]
216
+ b, _, _ = q.shape
217
+
218
+ for (cs, ucs), cn_stop, cn_weight in tasks:
219
+ if current_step < cn_stop:
220
+ ip_k_c = cs[ip_index * 2].to(q)
221
+ ip_v_c = cs[ip_index * 2 + 1].to(q)
222
+ ip_k_uc = ucs[ip_index * 2].to(q)
223
+ ip_v_uc = ucs[ip_index * 2 + 1].to(q)
224
+
225
+ ip_k = torch.cat([(ip_k_c, ip_k_uc)[i] for i in cond_or_uncond], dim=0)
226
+ ip_v = torch.cat([(ip_v_c, ip_v_uc)[i] for i in cond_or_uncond], dim=0)
227
+
228
+ # Midjourney's attention formulation of image prompt (non-official reimplementation)
229
+ # Written by Lvmin Zhang at Stanford University, 2023 Dec
230
+ # For non-commercial use only - if you use this in commercial project then
231
+ # probably it has some intellectual property issues.
232
+ # Contact lvminzhang@acm.org if you are not sure.
233
+
234
+ # Below is the sensitive part with potential intellectual property issues.
235
+
236
+ ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
237
+ ip_v_offset = ip_v - ip_v_mean
238
+
239
+ B, F, C = ip_k.shape
240
+ channel_penalty = float(C) / 1280.0
241
+ weight = cn_weight * channel_penalty
242
+
243
+ ip_k = ip_k * weight
244
+ ip_v = ip_v_offset + ip_v_mean * weight
245
+
246
+ k.append(ip_k)
247
+ v.append(ip_v)
248
+
249
+ k = torch.cat(k, dim=1)
250
+ v = torch.cat(v, dim=1)
251
+ out = sdp(q, k, v, extra_options)
252
+
253
+
254
+ return out.to(dtype=org_dtype)
255
+ return patcher
256
+
257
+ def set_model_patch_replace(model, number, key):
258
+ to = model.model_options["transformer_options"]
259
+ if "patches_replace" not in to:
260
+ to["patches_replace"] = {}
261
+ if "attn2" not in to["patches_replace"]:
262
+ to["patches_replace"]["attn2"] = {}
263
+ if key not in to["patches_replace"]["attn2"]:
264
+ to["patches_replace"]["attn2"][key] = make_attn_patcher(number)
265
+
266
+ number = 0
267
+
268
+ for id in [4, 5, 7, 8]:
269
+ block_indices = range(2) if id in [4, 5] else range(10)
270
+ for index in block_indices:
271
+ set_model_patch_replace(new_model, number, ("input", id, index))
272
+ number += 1
273
+
274
+ for id in range(6):
275
+ block_indices = range(2) if id in [3, 4, 5] else range(10)
276
+ for index in block_indices:
277
+ set_model_patch_replace(new_model, number, ("output", id, index))
278
+ number += 1
279
+
280
+ for index in range(10):
281
+ set_model_patch_replace(new_model, number, ("middle", 0, index))
282
+ number += 1
283
+
284
+ return new_model
extras/preprocessors.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ def centered_canny(x: np.ndarray, canny_low_threshold, canny_high_threshold):
6
+ assert isinstance(x, np.ndarray)
7
+ assert x.ndim == 2 and x.dtype == np.uint8
8
+
9
+ y = cv2.Canny(x, int(canny_low_threshold), int(canny_high_threshold))
10
+ y = y.astype(np.float32) / 255.0
11
+ return y
12
+
13
+
14
+ def centered_canny_color(x: np.ndarray, canny_low_threshold, canny_high_threshold):
15
+ assert isinstance(x, np.ndarray)
16
+ assert x.ndim == 3 and x.shape[2] == 3
17
+
18
+ result = [centered_canny(x[..., i], canny_low_threshold, canny_high_threshold) for i in range(3)]
19
+ result = np.stack(result, axis=2)
20
+ return result
21
+
22
+
23
+ def pyramid_canny_color(x: np.ndarray, canny_low_threshold, canny_high_threshold):
24
+ assert isinstance(x, np.ndarray)
25
+ assert x.ndim == 3 and x.shape[2] == 3
26
+
27
+ H, W, C = x.shape
28
+ acc_edge = None
29
+
30
+ for k in [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
31
+ Hs, Ws = int(H * k), int(W * k)
32
+ small = cv2.resize(x, (Ws, Hs), interpolation=cv2.INTER_AREA)
33
+ edge = centered_canny_color(small, canny_low_threshold, canny_high_threshold)
34
+ if acc_edge is None:
35
+ acc_edge = edge
36
+ else:
37
+ acc_edge = cv2.resize(acc_edge, (edge.shape[1], edge.shape[0]), interpolation=cv2.INTER_LINEAR)
38
+ acc_edge = acc_edge * 0.75 + edge * 0.25
39
+
40
+ return acc_edge
41
+
42
+
43
+ def norm255(x, low=4, high=96):
44
+ assert isinstance(x, np.ndarray)
45
+ assert x.ndim == 2 and x.dtype == np.float32
46
+
47
+ v_min = np.percentile(x, low)
48
+ v_max = np.percentile(x, high)
49
+
50
+ x -= v_min
51
+ x /= v_max - v_min
52
+
53
+ return x * 255.0
54
+
55
+
56
+ def canny_pyramid(x, canny_low_threshold, canny_high_threshold):
57
+ # For some reasons, SAI's Control-lora Canny seems to be trained on canny maps with non-standard resolutions.
58
+ # Then we use pyramid to use all resolutions to avoid missing any structure in specific resolutions.
59
+
60
+ color_canny = pyramid_canny_color(x, canny_low_threshold, canny_high_threshold)
61
+ result = np.sum(color_canny, axis=2)
62
+
63
+ return norm255(result, low=1, high=99).clip(0, 255).astype(np.uint8)
64
+
65
+
66
+ def cpds(x):
67
+ # cv2.decolor is not "decolor", it is Cewu Lu's method
68
+ # See http://www.cse.cuhk.edu.hk/leojia/projects/color2gray/index.html
69
+ # See https://docs.opencv.org/3.0-beta/modules/photo/doc/decolor.html
70
+
71
+ raw = cv2.GaussianBlur(x, (0, 0), 0.8)
72
+ density, boost = cv2.decolor(raw)
73
+
74
+ raw = raw.astype(np.float32)
75
+ density = density.astype(np.float32)
76
+ boost = boost.astype(np.float32)
77
+
78
+ offset = np.sum((raw - boost) ** 2.0, axis=2) ** 0.5
79
+ result = density + offset
80
+
81
+ return norm255(result, low=4, high=96).clip(0, 255).astype(np.uint8)
extras/resampler.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2
+ import math
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+
8
+ # FFN
9
+ def FeedForward(dim, mult=4):
10
+ inner_dim = int(dim * mult)
11
+ return nn.Sequential(
12
+ nn.LayerNorm(dim),
13
+ nn.Linear(dim, inner_dim, bias=False),
14
+ nn.GELU(),
15
+ nn.Linear(inner_dim, dim, bias=False),
16
+ )
17
+
18
+
19
+ def reshape_tensor(x, heads):
20
+ bs, length, width = x.shape
21
+ #(bs, length, width) --> (bs, length, n_heads, dim_per_head)
22
+ x = x.view(bs, length, heads, -1)
23
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
24
+ x = x.transpose(1, 2)
25
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
26
+ x = x.reshape(bs, heads, length, -1)
27
+ return x
28
+
29
+
30
+ class PerceiverAttention(nn.Module):
31
+ def __init__(self, *, dim, dim_head=64, heads=8):
32
+ super().__init__()
33
+ self.scale = dim_head**-0.5
34
+ self.dim_head = dim_head
35
+ self.heads = heads
36
+ inner_dim = dim_head * heads
37
+
38
+ self.norm1 = nn.LayerNorm(dim)
39
+ self.norm2 = nn.LayerNorm(dim)
40
+
41
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
42
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
43
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
44
+
45
+
46
+ def forward(self, x, latents):
47
+ """
48
+ Args:
49
+ x (torch.Tensor): image features
50
+ shape (b, n1, D)
51
+ latent (torch.Tensor): latent features
52
+ shape (b, n2, D)
53
+ """
54
+ x = self.norm1(x)
55
+ latents = self.norm2(latents)
56
+
57
+ b, l, _ = latents.shape
58
+
59
+ q = self.to_q(latents)
60
+ kv_input = torch.cat((x, latents), dim=-2)
61
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
62
+
63
+ q = reshape_tensor(q, self.heads)
64
+ k = reshape_tensor(k, self.heads)
65
+ v = reshape_tensor(v, self.heads)
66
+
67
+ # attention
68
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
69
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
70
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
71
+ out = weight @ v
72
+
73
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
74
+
75
+ return self.to_out(out)
76
+
77
+
78
+ class Resampler(nn.Module):
79
+ def __init__(
80
+ self,
81
+ dim=1024,
82
+ depth=8,
83
+ dim_head=64,
84
+ heads=16,
85
+ num_queries=8,
86
+ embedding_dim=768,
87
+ output_dim=1024,
88
+ ff_mult=4,
89
+ ):
90
+ super().__init__()
91
+
92
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
93
+
94
+ self.proj_in = nn.Linear(embedding_dim, dim)
95
+
96
+ self.proj_out = nn.Linear(dim, output_dim)
97
+ self.norm_out = nn.LayerNorm(output_dim)
98
+
99
+ self.layers = nn.ModuleList([])
100
+ for _ in range(depth):
101
+ self.layers.append(
102
+ nn.ModuleList(
103
+ [
104
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
105
+ FeedForward(dim=dim, mult=ff_mult),
106
+ ]
107
+ )
108
+ )
109
+
110
+ def forward(self, x):
111
+ latents = self.latents.repeat(x.size(0), 1, 1).to(x)
112
+
113
+ x = self.proj_in(x)
114
+
115
+ for attn, ff in self.layers:
116
+ latents = attn(x, latents) + latents
117
+ latents = ff(latents) + latents
118
+
119
+ latents = self.proj_out(latents)
120
+ return self.norm_out(latents)
extras/vae_interpose.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/city96/SD-Latent-Interposer/blob/main/interposer.py
2
+
3
+ import os
4
+ import torch
5
+ import safetensors.torch as sf
6
+ import torch.nn as nn
7
+ import ldm_patched.modules.model_management
8
+
9
+ from ldm_patched.modules.model_patcher import ModelPatcher
10
+ from modules.config import path_vae_approx
11
+
12
+
13
+ class Block(nn.Module):
14
+ def __init__(self, size):
15
+ super().__init__()
16
+ self.join = nn.ReLU()
17
+ self.long = nn.Sequential(
18
+ nn.Conv2d(size, size, kernel_size=3, stride=1, padding=1),
19
+ nn.LeakyReLU(0.1),
20
+ nn.Conv2d(size, size, kernel_size=3, stride=1, padding=1),
21
+ nn.LeakyReLU(0.1),
22
+ nn.Conv2d(size, size, kernel_size=3, stride=1, padding=1),
23
+ )
24
+
25
+ def forward(self, x):
26
+ y = self.long(x)
27
+ z = self.join(y + x)
28
+ return z
29
+
30
+
31
+ class Interposer(nn.Module):
32
+ def __init__(self):
33
+ super().__init__()
34
+ self.chan = 4
35
+ self.hid = 128
36
+
37
+ self.head_join = nn.ReLU()
38
+ self.head_short = nn.Conv2d(self.chan, self.hid, kernel_size=3, stride=1, padding=1)
39
+ self.head_long = nn.Sequential(
40
+ nn.Conv2d(self.chan, self.hid, kernel_size=3, stride=1, padding=1),
41
+ nn.LeakyReLU(0.1),
42
+ nn.Conv2d(self.hid, self.hid, kernel_size=3, stride=1, padding=1),
43
+ nn.LeakyReLU(0.1),
44
+ nn.Conv2d(self.hid, self.hid, kernel_size=3, stride=1, padding=1),
45
+ )
46
+ self.core = nn.Sequential(
47
+ Block(self.hid),
48
+ Block(self.hid),
49
+ Block(self.hid),
50
+ )
51
+ self.tail = nn.Sequential(
52
+ nn.ReLU(),
53
+ nn.Conv2d(self.hid, self.chan, kernel_size=3, stride=1, padding=1)
54
+ )
55
+
56
+ def forward(self, x):
57
+ y = self.head_join(
58
+ self.head_long(x) +
59
+ self.head_short(x)
60
+ )
61
+ z = self.core(y)
62
+ return self.tail(z)
63
+
64
+
65
+ vae_approx_model = None
66
+ vae_approx_filename = os.path.join(path_vae_approx, 'xl-to-v1_interposer-v3.1.safetensors')
67
+
68
+
69
+ def parse(x):
70
+ global vae_approx_model
71
+
72
+ x_origin = x.clone()
73
+
74
+ if vae_approx_model is None:
75
+ model = Interposer()
76
+ model.eval()
77
+ sd = sf.load_file(vae_approx_filename)
78
+ model.load_state_dict(sd)
79
+ fp16 = ldm_patched.modules.model_management.should_use_fp16()
80
+ if fp16:
81
+ model = model.half()
82
+ vae_approx_model = ModelPatcher(
83
+ model=model,
84
+ load_device=ldm_patched.modules.model_management.get_torch_device(),
85
+ offload_device=torch.device('cpu')
86
+ )
87
+ vae_approx_model.dtype = torch.float16 if fp16 else torch.float32
88
+
89
+ ldm_patched.modules.model_management.load_model_gpu(vae_approx_model)
90
+
91
+ x = x_origin.to(device=vae_approx_model.load_device, dtype=vae_approx_model.dtype)
92
+ x = vae_approx_model.model(x).to(x_origin)
93
+ return x
extras/wd14tagger.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags
2
+ # https://github.com/pythongosssss/ComfyUI-WD14-Tagger/blob/main/wd14tagger.py
3
+
4
+ # {
5
+ # "wd-v1-4-moat-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2",
6
+ # "wd-v1-4-convnextv2-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-convnextv2-tagger-v2",
7
+ # "wd-v1-4-convnext-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2",
8
+ # "wd-v1-4-convnext-tagger": "https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger",
9
+ # "wd-v1-4-vit-tagger-v2": "https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2"
10
+ # }
11
+
12
+
13
+ import numpy as np
14
+ import csv
15
+ import onnxruntime as ort
16
+
17
+ from PIL import Image
18
+ from onnxruntime import InferenceSession
19
+ from modules.config import path_clip_vision
20
+ from modules.model_loader import load_file_from_url
21
+
22
+
23
+ global_model = None
24
+ global_csv = None
25
+
26
+
27
+ def default_interrogator(image_rgb, threshold=0.35, character_threshold=0.85, exclude_tags=""):
28
+ global global_model, global_csv
29
+
30
+ model_name = "wd-v1-4-moat-tagger-v2"
31
+
32
+ model_onnx_filename = load_file_from_url(
33
+ url=f'https://huggingface.co/lllyasviel/misc/resolve/main/{model_name}.onnx',
34
+ model_dir=path_clip_vision,
35
+ file_name=f'{model_name}.onnx',
36
+ )
37
+
38
+ model_csv_filename = load_file_from_url(
39
+ url=f'https://huggingface.co/lllyasviel/misc/resolve/main/{model_name}.csv',
40
+ model_dir=path_clip_vision,
41
+ file_name=f'{model_name}.csv',
42
+ )
43
+
44
+ if global_model is not None:
45
+ model = global_model
46
+ else:
47
+ model = InferenceSession(model_onnx_filename, providers=ort.get_available_providers())
48
+ global_model = model
49
+
50
+ input = model.get_inputs()[0]
51
+ height = input.shape[1]
52
+
53
+ image = Image.fromarray(image_rgb) # RGB
54
+ ratio = float(height)/max(image.size)
55
+ new_size = tuple([int(x*ratio) for x in image.size])
56
+ image = image.resize(new_size, Image.LANCZOS)
57
+ square = Image.new("RGB", (height, height), (255, 255, 255))
58
+ square.paste(image, ((height-new_size[0])//2, (height-new_size[1])//2))
59
+
60
+ image = np.array(square).astype(np.float32)
61
+ image = image[:, :, ::-1] # RGB -> BGR
62
+ image = np.expand_dims(image, 0)
63
+
64
+ if global_csv is not None:
65
+ csv_lines = global_csv
66
+ else:
67
+ csv_lines = []
68
+ with open(model_csv_filename) as f:
69
+ reader = csv.reader(f)
70
+ next(reader)
71
+ for row in reader:
72
+ csv_lines.append(row)
73
+ global_csv = csv_lines
74
+
75
+ tags = []
76
+ general_index = None
77
+ character_index = None
78
+ for line_num, row in enumerate(csv_lines):
79
+ if general_index is None and row[2] == "0":
80
+ general_index = line_num
81
+ elif character_index is None and row[2] == "4":
82
+ character_index = line_num
83
+ tags.append(row[1])
84
+
85
+ label_name = model.get_outputs()[0].name
86
+ probs = model.run([label_name], {input.name: image})[0]
87
+
88
+ result = list(zip(tags, probs[0]))
89
+
90
+ general = [item for item in result[general_index:character_index] if item[1] > threshold]
91
+ character = [item for item in result[character_index:] if item[1] > character_threshold]
92
+
93
+ all = character + general
94
+ remove = [s.strip() for s in exclude_tags.lower().split(",")]
95
+ all = [tag for tag in all if tag[0] not in remove]
96
+
97
+ res = ", ".join((item[0].replace("(", "\\(").replace(")", "\\)") for item in all)).replace('_', ' ')
98
+ return res
javascript/contextMenus.js ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // based on https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/v1.6.0/javascript/contextMenus.js
2
+
3
+ var contextMenuInit = function() {
4
+ let eventListenerApplied = false;
5
+ let menuSpecs = new Map();
6
+
7
+ const uid = function() {
8
+ return Date.now().toString(36) + Math.random().toString(36).substring(2);
9
+ };
10
+
11
+ function showContextMenu(event, element, menuEntries) {
12
+ let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
13
+ let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
14
+
15
+ let oldMenu = gradioApp().querySelector('#context-menu');
16
+ if (oldMenu) {
17
+ oldMenu.remove();
18
+ }
19
+
20
+ let baseStyle = window.getComputedStyle(gradioApp().querySelector('button.selected'));
21
+
22
+ const contextMenu = document.createElement('nav');
23
+ contextMenu.id = "context-menu";
24
+ contextMenu.style.background = baseStyle.background;
25
+ contextMenu.style.color = baseStyle.color;
26
+ contextMenu.style.fontFamily = baseStyle.fontFamily;
27
+ contextMenu.style.top = posy + 'px';
28
+ contextMenu.style.left = posx + 'px';
29
+
30
+ const contextMenuList = document.createElement('ul');
31
+ contextMenuList.className = 'context-menu-items';
32
+ contextMenu.append(contextMenuList);
33
+
34
+ menuEntries.forEach(function(entry) {
35
+ let contextMenuEntry = document.createElement('a');
36
+ contextMenuEntry.innerHTML = entry['name'];
37
+ contextMenuEntry.addEventListener("click", function() {
38
+ entry['func']();
39
+ });
40
+ contextMenuList.append(contextMenuEntry);
41
+
42
+ });
43
+
44
+ gradioApp().appendChild(contextMenu);
45
+
46
+ let menuWidth = contextMenu.offsetWidth + 4;
47
+ let menuHeight = contextMenu.offsetHeight + 4;
48
+
49
+ let windowWidth = window.innerWidth;
50
+ let windowHeight = window.innerHeight;
51
+
52
+ if ((windowWidth - posx) < menuWidth) {
53
+ contextMenu.style.left = windowWidth - menuWidth + "px";
54
+ }
55
+
56
+ if ((windowHeight - posy) < menuHeight) {
57
+ contextMenu.style.top = windowHeight - menuHeight + "px";
58
+ }
59
+
60
+ }
61
+
62
+ function appendContextMenuOption(targetElementSelector, entryName, entryFunction) {
63
+
64
+ var currentItems = menuSpecs.get(targetElementSelector);
65
+
66
+ if (!currentItems) {
67
+ currentItems = [];
68
+ menuSpecs.set(targetElementSelector, currentItems);
69
+ }
70
+ let newItem = {
71
+ id: targetElementSelector + '_' + uid(),
72
+ name: entryName,
73
+ func: entryFunction,
74
+ isNew: true
75
+ };
76
+
77
+ currentItems.push(newItem);
78
+ return newItem['id'];
79
+ }
80
+
81
+ function removeContextMenuOption(uid) {
82
+ menuSpecs.forEach(function(v) {
83
+ let index = -1;
84
+ v.forEach(function(e, ei) {
85
+ if (e['id'] == uid) {
86
+ index = ei;
87
+ }
88
+ });
89
+ if (index >= 0) {
90
+ v.splice(index, 1);
91
+ }
92
+ });
93
+ }
94
+
95
+ function addContextMenuEventListener() {
96
+ if (eventListenerApplied) {
97
+ return;
98
+ }
99
+ gradioApp().addEventListener("click", function(e) {
100
+ if (!e.isTrusted) {
101
+ return;
102
+ }
103
+
104
+ let oldMenu = gradioApp().querySelector('#context-menu');
105
+ if (oldMenu) {
106
+ oldMenu.remove();
107
+ }
108
+ });
109
+ gradioApp().addEventListener("contextmenu", function(e) {
110
+ let oldMenu = gradioApp().querySelector('#context-menu');
111
+ if (oldMenu) {
112
+ oldMenu.remove();
113
+ }
114
+ menuSpecs.forEach(function(v, k) {
115
+ if (e.composedPath()[0].matches(k)) {
116
+ showContextMenu(e, e.composedPath()[0], v);
117
+ e.preventDefault();
118
+ }
119
+ });
120
+ });
121
+ eventListenerApplied = true;
122
+
123
+ }
124
+
125
+ return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener];
126
+ };
127
+
128
+ var initResponse = contextMenuInit();
129
+ var appendContextMenuOption = initResponse[0];
130
+ var removeContextMenuOption = initResponse[1];
131
+ var addContextMenuEventListener = initResponse[2];
132
+
133
+ let cancelGenerateForever = function() {
134
+ clearInterval(window.generateOnRepeatInterval);
135
+ };
136
+
137
+ (function() {
138
+ //Start example Context Menu Items
139
+ let generateOnRepeat = function(genbuttonid, interruptbuttonid) {
140
+ let genbutton = gradioApp().querySelector(genbuttonid);
141
+ let interruptbutton = gradioApp().querySelector(interruptbuttonid);
142
+ if (!interruptbutton.offsetParent) {
143
+ genbutton.click();
144
+ }
145
+ clearInterval(window.generateOnRepeatInterval);
146
+ window.generateOnRepeatInterval = setInterval(function() {
147
+ if (!interruptbutton.offsetParent) {
148
+ genbutton.click();
149
+ }
150
+ },
151
+ 500);
152
+ };
153
+
154
+ let generateOnRepeatForButtons = function() {
155
+ generateOnRepeat('#generate_button', '#stop_button');
156
+ };
157
+ appendContextMenuOption('#generate_button', 'Generate forever', generateOnRepeatForButtons);
158
+
159
+ })();
160
+ //End example Context Menu Items
161
+
162
+ document.onreadystatechange = function () {
163
+ if (document.readyState == "complete") {
164
+ addContextMenuEventListener();
165
+ }
166
+ };
javascript/edit-attention.js ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ function updateInput(target) {
2
+ let e = new Event("input", {bubbles: true});
3
+ Object.defineProperty(e, "target", {value: target});
4
+ target.dispatchEvent(e);
5
+ }
6
+
7
+ function keyupEditAttention(event) {
8
+ let target = event.originalTarget || event.composedPath()[0];
9
+ if (!target.matches("*:is([id*='_prompt'], .prompt) textarea")) return;
10
+ if (!(event.metaKey || event.ctrlKey)) return;
11
+
12
+ let isPlus = event.key == "ArrowUp";
13
+ let isMinus = event.key == "ArrowDown";
14
+ if (!isPlus && !isMinus) return;
15
+
16
+ let selectionStart = target.selectionStart;
17
+ let selectionEnd = target.selectionEnd;
18
+ let text = target.value;
19
+
20
+ function selectCurrentParenthesisBlock(OPEN, CLOSE) {
21
+ if (selectionStart !== selectionEnd) return false;
22
+
23
+ // Find opening parenthesis around current cursor
24
+ const before = text.substring(0, selectionStart);
25
+ let beforeParen = before.lastIndexOf(OPEN);
26
+ if (beforeParen == -1) return false;
27
+ let beforeParenClose = before.lastIndexOf(CLOSE);
28
+ while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
29
+ beforeParen = before.lastIndexOf(OPEN, beforeParen - 1);
30
+ beforeParenClose = before.lastIndexOf(CLOSE, beforeParenClose - 1);
31
+ }
32
+
33
+ // Find closing parenthesis around current cursor
34
+ const after = text.substring(selectionStart);
35
+ let afterParen = after.indexOf(CLOSE);
36
+ if (afterParen == -1) return false;
37
+ let afterParenOpen = after.indexOf(OPEN);
38
+ while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
39
+ afterParen = after.indexOf(CLOSE, afterParen + 1);
40
+ afterParenOpen = after.indexOf(OPEN, afterParenOpen + 1);
41
+ }
42
+ if (beforeParen === -1 || afterParen === -1) return false;
43
+
44
+ // Set the selection to the text between the parenthesis
45
+ const parenContent = text.substring(beforeParen + 1, selectionStart + afterParen);
46
+ const lastColon = parenContent.lastIndexOf(":");
47
+ selectionStart = beforeParen + 1;
48
+ selectionEnd = selectionStart + lastColon;
49
+ target.setSelectionRange(selectionStart, selectionEnd);
50
+ return true;
51
+ }
52
+
53
+ function selectCurrentWord() {
54
+ if (selectionStart !== selectionEnd) return false;
55
+ const delimiters = ".,\\/!?%^*;:{}=`~() \r\n\t";
56
+
57
+ // seek backward until to find beggining
58
+ while (!delimiters.includes(text[selectionStart - 1]) && selectionStart > 0) {
59
+ selectionStart--;
60
+ }
61
+
62
+ // seek forward to find end
63
+ while (!delimiters.includes(text[selectionEnd]) && selectionEnd < text.length) {
64
+ selectionEnd++;
65
+ }
66
+
67
+ target.setSelectionRange(selectionStart, selectionEnd);
68
+ return true;
69
+ }
70
+
71
+ // If the user hasn't selected anything, let's select their current parenthesis block or word
72
+ if (!selectCurrentParenthesisBlock('<', '>') && !selectCurrentParenthesisBlock('(', ')')) {
73
+ selectCurrentWord();
74
+ }
75
+
76
+ event.preventDefault();
77
+
78
+ var closeCharacter = ')';
79
+ var delta = 0.1;
80
+
81
+ if (selectionStart > 0 && text[selectionStart - 1] == '<') {
82
+ closeCharacter = '>';
83
+ delta = 0.05;
84
+ } else if (selectionStart == 0 || text[selectionStart - 1] != "(") {
85
+
86
+ // do not include spaces at the end
87
+ while (selectionEnd > selectionStart && text[selectionEnd - 1] == ' ') {
88
+ selectionEnd -= 1;
89
+ }
90
+ if (selectionStart == selectionEnd) {
91
+ return;
92
+ }
93
+
94
+ text = text.slice(0, selectionStart) + "(" + text.slice(selectionStart, selectionEnd) + ":1.0)" + text.slice(selectionEnd);
95
+
96
+ selectionStart += 1;
97
+ selectionEnd += 1;
98
+ }
99
+
100
+ var end = text.slice(selectionEnd + 1).indexOf(closeCharacter) + 1;
101
+ var weight = parseFloat(text.slice(selectionEnd + 1, selectionEnd + 1 + end));
102
+ if (isNaN(weight)) return;
103
+
104
+ weight += isPlus ? delta : -delta;
105
+ weight = parseFloat(weight.toPrecision(12));
106
+ if (String(weight).length == 1) weight += ".0";
107
+
108
+ if (closeCharacter == ')' && weight == 1) {
109
+ var endParenPos = text.substring(selectionEnd).indexOf(')');
110
+ text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + endParenPos + 1);
111
+ selectionStart--;
112
+ selectionEnd--;
113
+ } else {
114
+ text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + end);
115
+ }
116
+
117
+ target.focus();
118
+ target.value = text;
119
+ target.selectionStart = selectionStart;
120
+ target.selectionEnd = selectionEnd;
121
+
122
+ updateInput(target);
123
+
124
+ }
125
+
126
+ addEventListener('keydown', (event) => {
127
+ keyupEditAttention(event);
128
+ });
javascript/imageviewer.js ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // From A1111
2
+
3
+ function closeModal() {
4
+ gradioApp().getElementById("lightboxModal").style.display = "none";
5
+ }
6
+
7
+ function showModal(event) {
8
+ const source = event.target || event.srcElement;
9
+ const modalImage = gradioApp().getElementById("modalImage");
10
+ const lb = gradioApp().getElementById("lightboxModal");
11
+ modalImage.src = source.src;
12
+ if (modalImage.style.display === 'none') {
13
+ lb.style.setProperty('background-image', 'url(' + source.src + ')');
14
+ }
15
+ lb.style.display = "flex";
16
+ lb.focus();
17
+
18
+ event.stopPropagation();
19
+ }
20
+
21
+ function negmod(n, m) {
22
+ return ((n % m) + m) % m;
23
+ }
24
+
25
+ function updateOnBackgroundChange() {
26
+ const modalImage = gradioApp().getElementById("modalImage");
27
+ if (modalImage && modalImage.offsetParent) {
28
+ let currentButton = selected_gallery_button();
29
+
30
+ if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
31
+ modalImage.src = currentButton.children[0].src;
32
+ if (modalImage.style.display === 'none') {
33
+ const modal = gradioApp().getElementById("lightboxModal");
34
+ modal.style.setProperty('background-image', `url(${modalImage.src})`);
35
+ }
36
+ }
37
+ }
38
+ }
39
+
40
+ function all_gallery_buttons() {
41
+ var allGalleryButtons = gradioApp().querySelectorAll('.image_gallery .thumbnails > .thumbnail-item.thumbnail-small');
42
+ var visibleGalleryButtons = [];
43
+ allGalleryButtons.forEach(function(elem) {
44
+ if (elem.parentElement.offsetParent) {
45
+ visibleGalleryButtons.push(elem);
46
+ }
47
+ });
48
+ return visibleGalleryButtons;
49
+ }
50
+
51
+ function selected_gallery_button() {
52
+ return all_gallery_buttons().find(elem => elem.classList.contains('selected')) ?? null;
53
+ }
54
+
55
+ function selected_gallery_index() {
56
+ return all_gallery_buttons().findIndex(elem => elem.classList.contains('selected'));
57
+ }
58
+
59
+ function modalImageSwitch(offset) {
60
+ var galleryButtons = all_gallery_buttons();
61
+
62
+ if (galleryButtons.length > 1) {
63
+ var currentButton = selected_gallery_button();
64
+
65
+ var result = -1;
66
+ galleryButtons.forEach(function(v, i) {
67
+ if (v == currentButton) {
68
+ result = i;
69
+ }
70
+ });
71
+
72
+ if (result != -1) {
73
+ var nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)];
74
+ nextButton.click();
75
+ const modalImage = gradioApp().getElementById("modalImage");
76
+ const modal = gradioApp().getElementById("lightboxModal");
77
+ modalImage.src = nextButton.children[0].src;
78
+ if (modalImage.style.display === 'none') {
79
+ modal.style.setProperty('background-image', `url(${modalImage.src})`);
80
+ }
81
+ setTimeout(function() {
82
+ modal.focus();
83
+ }, 10);
84
+ }
85
+ }
86
+ }
87
+
88
+ function saveImage() {
89
+
90
+ }
91
+
92
+ function modalSaveImage(event) {
93
+ event.stopPropagation();
94
+ }
95
+
96
+ function modalNextImage(event) {
97
+ modalImageSwitch(1);
98
+ event.stopPropagation();
99
+ }
100
+
101
+ function modalPrevImage(event) {
102
+ modalImageSwitch(-1);
103
+ event.stopPropagation();
104
+ }
105
+
106
+ function modalKeyHandler(event) {
107
+ switch (event.key) {
108
+ case "s":
109
+ saveImage();
110
+ break;
111
+ case "ArrowLeft":
112
+ modalPrevImage(event);
113
+ break;
114
+ case "ArrowRight":
115
+ modalNextImage(event);
116
+ break;
117
+ case "Escape":
118
+ closeModal();
119
+ break;
120
+ }
121
+ }
122
+
123
+ function setupImageForLightbox(e) {
124
+ if (e.dataset.modded) {
125
+ return;
126
+ }
127
+
128
+ e.dataset.modded = true;
129
+ e.style.cursor = 'pointer';
130
+ e.style.userSelect = 'none';
131
+
132
+ var isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1;
133
+
134
+ // For Firefox, listening on click first switched to next image then shows the lightbox.
135
+ // If you know how to fix this without switching to mousedown event, please.
136
+ // For other browsers the event is click to make it possiblr to drag picture.
137
+ var event = isFirefox ? 'mousedown' : 'click';
138
+
139
+ e.addEventListener(event, function(evt) {
140
+ if (evt.button == 1) {
141
+ open(evt.target.src);
142
+ evt.preventDefault();
143
+ return;
144
+ }
145
+ if (evt.button != 0) return;
146
+
147
+ modalZoomSet(gradioApp().getElementById('modalImage'), true);
148
+ evt.preventDefault();
149
+ showModal(evt);
150
+ }, true);
151
+
152
+ }
153
+
154
+ function modalZoomSet(modalImage, enable) {
155
+ if (modalImage) modalImage.classList.toggle('modalImageFullscreen', !!enable);
156
+ }
157
+
158
+ function modalZoomToggle(event) {
159
+ var modalImage = gradioApp().getElementById("modalImage");
160
+ modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'));
161
+ event.stopPropagation();
162
+ }
163
+
164
+ function modalTileImageToggle(event) {
165
+ const modalImage = gradioApp().getElementById("modalImage");
166
+ const modal = gradioApp().getElementById("lightboxModal");
167
+ const isTiling = modalImage.style.display === 'none';
168
+ if (isTiling) {
169
+ modalImage.style.display = 'block';
170
+ modal.style.setProperty('background-image', 'none');
171
+ } else {
172
+ modalImage.style.display = 'none';
173
+ modal.style.setProperty('background-image', `url(${modalImage.src})`);
174
+ }
175
+
176
+ event.stopPropagation();
177
+ }
178
+
179
+ onAfterUiUpdate(function() {
180
+ var fullImg_preview = gradioApp().querySelectorAll('.image_gallery > div > img');
181
+ if (fullImg_preview != null) {
182
+ fullImg_preview.forEach(setupImageForLightbox);
183
+ }
184
+ updateOnBackgroundChange();
185
+ });
186
+
187
+ document.addEventListener("DOMContentLoaded", function() {
188
+ //const modalFragment = document.createDocumentFragment();
189
+ const modal = document.createElement('div');
190
+ modal.onclick = closeModal;
191
+ modal.id = "lightboxModal";
192
+ modal.tabIndex = 0;
193
+ modal.addEventListener('keydown', modalKeyHandler, true);
194
+
195
+ const modalControls = document.createElement('div');
196
+ modalControls.className = 'modalControls gradio-container';
197
+ modal.append(modalControls);
198
+
199
+ const modalZoom = document.createElement('span');
200
+ modalZoom.className = 'modalZoom cursor';
201
+ modalZoom.innerHTML = '&#10529;';
202
+ modalZoom.addEventListener('click', modalZoomToggle, true);
203
+ modalZoom.title = "Toggle zoomed view";
204
+ modalControls.appendChild(modalZoom);
205
+
206
+ // const modalTileImage = document.createElement('span');
207
+ // modalTileImage.className = 'modalTileImage cursor';
208
+ // modalTileImage.innerHTML = '&#8862;';
209
+ // modalTileImage.addEventListener('click', modalTileImageToggle, true);
210
+ // modalTileImage.title = "Preview tiling";
211
+ // modalControls.appendChild(modalTileImage);
212
+ //
213
+ // const modalSave = document.createElement("span");
214
+ // modalSave.className = "modalSave cursor";
215
+ // modalSave.id = "modal_save";
216
+ // modalSave.innerHTML = "&#x1F5AB;";
217
+ // modalSave.addEventListener("click", modalSaveImage, true);
218
+ // modalSave.title = "Save Image(s)";
219
+ // modalControls.appendChild(modalSave);
220
+
221
+ const modalClose = document.createElement('span');
222
+ modalClose.className = 'modalClose cursor';
223
+ modalClose.innerHTML = '&times;';
224
+ modalClose.onclick = closeModal;
225
+ modalClose.title = "Close image viewer";
226
+ modalControls.appendChild(modalClose);
227
+
228
+ const modalImage = document.createElement('img');
229
+ modalImage.id = 'modalImage';
230
+ modalImage.onclick = closeModal;
231
+ modalImage.tabIndex = 0;
232
+ modalImage.addEventListener('keydown', modalKeyHandler, true);
233
+ modal.appendChild(modalImage);
234
+
235
+ const modalPrev = document.createElement('a');
236
+ modalPrev.className = 'modalPrev';
237
+ modalPrev.innerHTML = '&#10094;';
238
+ modalPrev.tabIndex = 0;
239
+ modalPrev.addEventListener('click', modalPrevImage, true);
240
+ modalPrev.addEventListener('keydown', modalKeyHandler, true);
241
+ modal.appendChild(modalPrev);
242
+
243
+ const modalNext = document.createElement('a');
244
+ modalNext.className = 'modalNext';
245
+ modalNext.innerHTML = '&#10095;';
246
+ modalNext.tabIndex = 0;
247
+ modalNext.addEventListener('click', modalNextImage, true);
248
+ modalNext.addEventListener('keydown', modalKeyHandler, true);
249
+
250
+ modal.appendChild(modalNext);
251
+
252
+ try {
253
+ gradioApp().appendChild(modal);
254
+ } catch (e) {
255
+ gradioApp().body.appendChild(modal);
256
+ }
257
+
258
+ document.body.appendChild(modal);
259
+
260
+ });
javascript/localization.js ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ var re_num = /^[.\d]+$/;
2
+
3
+ var original_lines = {};
4
+ var translated_lines = {};
5
+
6
+ function hasLocalization() {
7
+ return window.localization && Object.keys(window.localization).length > 0;
8
+ }
9
+
10
+ function textNodesUnder(el) {
11
+ var n, a = [], walk = document.createTreeWalker(el, NodeFilter.SHOW_TEXT, null, false);
12
+ while ((n = walk.nextNode())) a.push(n);
13
+ return a;
14
+ }
15
+
16
+ function canBeTranslated(node, text) {
17
+ if (!text) return false;
18
+ if (!node.parentElement) return false;
19
+ var parentType = node.parentElement.nodeName;
20
+ if (parentType == 'SCRIPT' || parentType == 'STYLE' || parentType == 'TEXTAREA') return false;
21
+ if (re_num.test(text)) return false;
22
+ return true;
23
+ }
24
+
25
+ function getTranslation(text) {
26
+ if (!text) return undefined;
27
+
28
+ if (translated_lines[text] === undefined) {
29
+ original_lines[text] = 1;
30
+ }
31
+
32
+ var tl = localization[text];
33
+ if (tl !== undefined) {
34
+ translated_lines[tl] = 1;
35
+ }
36
+
37
+ return tl;
38
+ }
39
+
40
+ function processTextNode(node) {
41
+ var text = node.textContent.trim();
42
+
43
+ if (!canBeTranslated(node, text)) return;
44
+
45
+ var tl = getTranslation(text);
46
+ if (tl !== undefined) {
47
+ node.textContent = tl;
48
+ if (text && node.parentElement) {
49
+ node.parentElement.setAttribute("data-original-text", text);
50
+ }
51
+ }
52
+ }
53
+
54
+ function processNode(node) {
55
+ if (node.nodeType == 3) {
56
+ processTextNode(node);
57
+ return;
58
+ }
59
+
60
+ if (node.title) {
61
+ let tl = getTranslation(node.title);
62
+ if (tl !== undefined) {
63
+ node.title = tl;
64
+ }
65
+ }
66
+
67
+ if (node.placeholder) {
68
+ let tl = getTranslation(node.placeholder);
69
+ if (tl !== undefined) {
70
+ node.placeholder = tl;
71
+ }
72
+ }
73
+
74
+ textNodesUnder(node).forEach(function(node) {
75
+ processTextNode(node);
76
+ });
77
+ }
78
+
79
+ function refresh_style_localization() {
80
+ processNode(document.querySelector('.style_selections'));
81
+ }
82
+
83
+ function localizeWholePage() {
84
+ processNode(gradioApp());
85
+
86
+ function elem(comp) {
87
+ var elem_id = comp.props.elem_id ? comp.props.elem_id : "component-" + comp.id;
88
+ return gradioApp().getElementById(elem_id);
89
+ }
90
+
91
+ for (var comp of window.gradio_config.components) {
92
+ if (comp.props.webui_tooltip) {
93
+ let e = elem(comp);
94
+
95
+ let tl = e ? getTranslation(e.title) : undefined;
96
+ if (tl !== undefined) {
97
+ e.title = tl;
98
+ }
99
+ }
100
+ if (comp.props.placeholder) {
101
+ let e = elem(comp);
102
+ let textbox = e ? e.querySelector('[placeholder]') : null;
103
+
104
+ let tl = textbox ? getTranslation(textbox.placeholder) : undefined;
105
+ if (tl !== undefined) {
106
+ textbox.placeholder = tl;
107
+ }
108
+ }
109
+ }
110
+ }
111
+
112
+ document.addEventListener("DOMContentLoaded", function() {
113
+ if (!hasLocalization()) {
114
+ return;
115
+ }
116
+
117
+ onUiUpdate(function(m) {
118
+ m.forEach(function(mutation) {
119
+ mutation.addedNodes.forEach(function(node) {
120
+ processNode(node);
121
+ });
122
+ });
123
+ });
124
+
125
+ localizeWholePage();
126
+
127
+ if (localization.rtl) { // if the language is from right to left,
128
+ (new MutationObserver((mutations, observer) => { // wait for the style to load
129
+ mutations.forEach(mutation => {
130
+ mutation.addedNodes.forEach(node => {
131
+ if (node.tagName === 'STYLE') {
132
+ observer.disconnect();
133
+
134
+ for (const x of node.sheet.rules) { // find all rtl media rules
135
+ if (Array.from(x.media || []).includes('rtl')) {
136
+ x.media.appendMedium('all'); // enable them
137
+ }
138
+ }
139
+ }
140
+ });
141
+ });
142
+ })).observe(gradioApp(), {childList: true});
143
+ }
144
+ });