import streamlit as st from transformers import Conversation, pipeline # Initialize the chat pipeline with the dolphin-2.6-mistral-7b model chat_pipeline = pipeline("conversational", model="cognitivecomputations/dolphin-2.6-mistral-7b") # Set page configuration for the Streamlit app st.set_page_config(page_title="Dolphin Chatbot", page_icon=":robot_face:") st.header("Dolphin 2.6 Mistral 7B Chatbot") # Initialize the conversation object if "conversation" not in st.session_state: st.session_state.conversation = Conversation() # Function to get user input and generate a response def load_answer(question): st.session_state.conversation.add_user_input(question) responses = chat_pipeline(st.session_state.conversation) # The latest response is the last element in the list return responses.generations[-1].text # Function to display the input bar and detect user input def get_input(): return st.text_input("You:", key="input") # Display input bar and wait for user input user_input = get_input() # Button to generate the response submit = st.button('Generate') # Actions to take when the 'Generate' button is clicked if submit: if user_input: # Get the assistant's response response = load_answer(user_input) # Display the response st.subheader("Answer:") st.write(response) else: # If no user input, prompt the user to enter a question st.warning("Please enter a question for the chatbot.")