File size: 5,497 Bytes
0fb2bdc
 
 
9d48224
128a6b8
0fb2bdc
 
 
8f50610
0fb2bdc
 
3e99dbe
0fb2bdc
 
 
3e99dbe
0fb2bdc
 
 
 
 
 
 
 
 
 
3e99dbe
0fb2bdc
3e99dbe
0fb2bdc
 
 
 
 
 
 
 
 
 
 
3e99dbe
0fb2bdc
3e99dbe
0fb2bdc
 
 
 
 
 
 
3e99dbe
0fb2bdc
3e99dbe
0fb2bdc
 
 
 
 
 
 
 
 
 
 
3e99dbe
0fb2bdc
 
 
 
 
 
 
 
 
3e99dbe
0fb2bdc
3e99dbe
0fb2bdc
 
 
 
3e99dbe
0fb2bdc
 
 
 
 
 
 
 
3e99dbe
0fb2bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
3e99dbe
0fb2bdc
 
 
 
3e99dbe
0fb2bdc
 
 
3e99dbe
0fb2bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f8208
666acd7
c1f8208
0fb2bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d48224
 
0fb2bdc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig
# import gradio as gr


# # Model IDs from Hugging Face Hub
# base_model_id = "HuggingFaceTB/SmolLM2-135M"
# instruct_model_id = "MaxBlumenfeld/smollm2-135m-bootleg-instruct-01"

# # Load tokenizer
# base_tokenizer = AutoTokenizer.from_pretrained(base_model_id)

# # Load models with explicit LLaMA architecture
# base_model = LlamaForCausalLM.from_pretrained(base_model_id)
# instruct_model = LlamaForCausalLM.from_pretrained(instruct_model_id)

# def generate_response(model, tokenizer, message, temperature=0.5, max_length=200, system_prompt="", is_instruct=False):
#     # Prepare input based on model type
#     if is_instruct:
#         if system_prompt:
#             full_prompt = f"{system_prompt}\n\nHuman: {message}\nAssistant:"
#         else:
#             full_prompt = f"Human: {message}\nAssistant:"
#     else:
#         # For base model, use simpler prompt format
#         full_prompt = message
    
#     inputs = tokenizer(full_prompt, return_tensors="pt")
    
#     with torch.no_grad():
#         outputs = model.generate(
#             inputs.input_ids,
#             max_length=max_length,
#             do_sample=True,
#             temperature=temperature,
#             top_k=50,
#             top_p=0.95,
#             num_return_sequences=1,
#             pad_token_id=tokenizer.eos_token_id  # Add padding token
#         )
        
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
#     if is_instruct:
#         try:
#             response = response.split("Assistant:")[-1].strip()
#         except:
#             pass
#     else:
#         response = response[len(full_prompt):].strip()
        
#     return response

# def chat(message, temperature, max_length, system_prompt):
#     # Generate responses from both models
#     base_response = generate_response(
#         base_model, 
#         base_tokenizer, 
#         message, 
#         temperature, 
#         max_length, 
#         system_prompt,
#         is_instruct=False
#     )
    
#     instruct_response = generate_response(
#         instruct_model, 
#         base_tokenizer, 
#         message, 
#         temperature, 
#         max_length, 
#         system_prompt,
#         is_instruct=True
#     )
    
#     return base_response, instruct_response

# # Create Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown("# SmolLM2-135M Comparison Demo")
#     gr.Markdown("Compare responses between base and fine-tuned versions of SmolLM2-135M")
    
#     with gr.Row():
#         with gr.Column():
#             message_input = gr.Textbox(label="Input Message")
#             system_prompt = gr.Textbox(
#                 label="System Prompt (Optional)",
#                 placeholder="Set context or personality for the model",
#                 lines=3
#             )
            
#         with gr.Column():
#             temperature = gr.Slider(
#                 minimum=0.1, 
#                 maximum=2.0, 
#                 value=0.5, 
#                 label="Temperature"
#             )
#             max_length = gr.Slider(
#                 minimum=50, 
#                 maximum=500, 
#                 value=200, 
#                 step=10, 
#                 label="Max Length"
#             )
    
#     with gr.Row():
#         with gr.Column():
#             gr.Markdown("### Base Model Response")
#             base_output = gr.Textbox(label="Base Model (SmolLM2-135M)", lines=5)
            
#         with gr.Column():
#             gr.Markdown("### Bootleg Instruct Model Response") 
#             instruct_output = gr.Textbox(label="Fine-tuned Model", lines=5)
    
#     submit_btn = gr.Button("Generate Responses")
#     submit_btn.click(
#         fn=chat,
#         inputs=[message_input, temperature, max_length, system_prompt],
#         outputs=[base_output, instruct_output]
#     )

# if __name__ == "__main__":
#     demo.launch()



from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr

# model_id = "HuggingFaceTB/SmolLM2-135M"
model_id = "MaxBlumenfeld/smollm2-135m-bootleg-instruct04"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

def generate_response(message, temperature=0.7, max_length=200):
   prompt = f"Human: {message}\nAssistant:"
   inputs = tokenizer(prompt, return_tensors="pt")
   
   with torch.no_grad():
       outputs = model.generate(
           inputs.input_ids,
           max_length=max_length,
           temperature=temperature,
           do_sample=True,
           pad_token_id=tokenizer.eos_token_id
       )
   
   response = tokenizer.decode(outputs[0], skip_special_tokens=True)
   return response.split("Assistant:")[-1].strip()

with gr.Blocks() as demo:
   gr.Markdown("# SmolLM2 Bootleg Instruct Chat")
   
   with gr.Row():
       with gr.Column():
           message = gr.Textbox(label="Message")
           temp = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature")
           max_len = gr.Slider(minimum=50, maximum=500, value=200, label="Max Length") 
           submit = gr.Button("Send")
           
       with gr.Column():
           output = gr.Textbox(label="Response")
           
   submit.click(
       generate_response,
       inputs=[message, temp, max_len],
       outputs=output
   )

if __name__ == "__main__":
   demo.launch()