from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks import soundfile as sf import numpy as np import os import torch import argparse SAMPLE_RATE = 8000 def get_sample_rate(audio_file_path): """ Get the sample rate of an audio file Args: audio_file_path (str): Path to the audio file Returns: int: Sample rate of the audio file """ _, sample_rate = sf.read(audio_file_path, always_2d=True) return sample_rate def change_sample_rate(input_audio_file_path, output_audio_file_path, sample_rate): """ Change the sample rate of an audio file Args: input_audio_file_path (str): Path to the input audio file output_audio_file_path (str): Path to the output audio file sample_rate (int): Sample rate to change to """ os.system(f'ffmpeg -i {input_audio_file_path} -ar {sample_rate} -loglevel error {output_audio_file_path}') def audio_is_stereo(audio_file_path): """ Check if an audio file is stereo Args: audio_file_path (str): Path to the audio file Returns: bool: True if the audio file is stereo, False otherwise """ audio, _ = sf.read(audio_file_path, always_2d=True) return audio.shape[1] == 2 def set_mono(input_audio_file_path, output_audio_file_path): """ Set an audio file to mono Args: input_audio_file_path (str): Path to the input audio file output_audio_file_path (str): Path to the output audio file """ os.system(f'ffmpeg -i {input_audio_file_path} -ac 1 -loglevel error {output_audio_file_path}') def main(args): # Get input and output files input = args.input output = args.input # Get input and output names input_name = input.split(".")[0] output_name = output.split(".")[0] # Get folder of output file input_folder = input_name.split("/")[0] output_folder = "vocals" input_file_name = input_name.split("/")[1] output_file_name = output_name.split("/")[1] # Set input files with 8k sample rate and mono input_8k = f"{input_name}_8k.wav" input_8k_mono = f"{input_name}_8k_mono.wav" # Check if input has 8k sample rate, if not, change it sr = get_sample_rate(input) if sr != SAMPLE_RATE: change_sample_rate(input, input_8k, SAMPLE_RATE) remove_8k = True else: input_8k = input remove_8k = False # Check if input is stereo, if yes, set it to mono if audio_is_stereo(input_8k): set_mono(input_8k, input_8k_mono) remove_mono = True else: input_8k_mono = input_8k remove_mono = False # Separate audio voices device = 'cuda' if torch.cuda.is_available() else 'cpu' separation = pipeline(Tasks.speech_separation, model='damo/speech_mossformer_separation_temporal_8k', device=device) result = separation(input_8k_mono) # Save separated audio voices for i, signal in enumerate(result['output_pcm_list']): save_file = f'{output_folder}/{output_file_name}_speaker{i:003d}.wav' sf.write(save_file, np.frombuffer(signal, dtype=np.int16), SAMPLE_RATE) # Remove temporary files if remove_8k: os.remove(input_8k) if remove_mono: os.remove(input_8k_mono) if __name__ == '__main__': argparser = argparse.ArgumentParser(description='Separate speech from a stereo audio file') argparser.add_argument('input', type=str, help='Input audio file') args = argparser.parse_args() main(args)