May222's picture
Update app.py
baf49b9
raw
history blame
2.71 kB
# import gradio as gr
# from transformers import pipeline
from PIL import Image
import pytesseract
import easyocr
import cv2
import os
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# def predict(input_img):
# predictions = pipeline(input_img)
# return input_img, {p["label"]: p["score"] for p in predictions}
# def recognize(input_img):
# text = pytesseract.image_to_string(Image.open("./data/" + filename))
# return input_img, text
# gradio_app = gr.Interface(
# recognize,
# inputs=[gr.Image(label="Upload an Image", type="pil")],
# outputs=[gr.Textbox(label="Text in the Image")],
# title="Extrate Text From Image",
# )
# if __name__ == "__main__":
# gradio_app.launch(server_port=8756)
import os
import matplotlib.pyplot as plt
import streamlit as st
import cv2
import tensorflow as tf
from PIL import Image
import pytesseract
DET_ARCHS = ["pytesseract", "easyocr"]
def main():
# Wide mode
st.set_page_config(layout="wide")
# Designing the interface
st.title("Image Text Recognition")
# For newline
st.write('\n')
# Instructions
st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*")
# Set the columns
cols = st.columns((1, 1, 1, 1))
cols[0].subheader("Input image")
cols[1].subheader("OCR output")
# Sidebar
# File selection
st.sidebar.title("Document selection")
# Disabling warning
# st.set_option('deprecation.showfileUploaderEncoding', False)
# Choose your own image
uploaded_file = st.sidebar.file_uploader("Upload files", type=['png', 'jpeg', 'jpg'])
if uploaded_file is not None:
doc = uploaded_file.read()
cols[0].image(doc)
# Model selection
st.sidebar.title("Model selection")
det_arch = st.sidebar.selectbox("OCR model", DET_ARCHS)
# For newline
st.sidebar.write('\n')
if st.sidebar.button("Analyze image"):
if uploaded_file is None:
st.sidebar.write("Please upload a document")
else:
with st.spinner('Loading model...'):
if det_arch == 'pytesseract':
predictor = pytesseract.image_to_string(Image.open(doc))
else:
reader = easyocr.Reader(['en'])
predictor = reader.readtext("./data/" + filename, detail = 0)
with st.spinner('Analyzing...'):
# Plot OCR output
if det_arch == 'pytesseract':
cols[1].text(predictor)
else:
cols[1].text(''.join(text))
if __name__ == '__main__':
main()