Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,31 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
7 |
-
|
8 |
import cv2
|
9 |
-
import
|
10 |
-
|
11 |
-
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
|
12 |
-
if any(gpu_devices):
|
13 |
-
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
|
14 |
-
|
15 |
-
from doctr.io import DocumentFile
|
16 |
-
from doctr.models import ocr_predictor
|
17 |
-
from doctr.utils.visualization import visualize_page
|
18 |
-
|
19 |
-
DET_ARCHS = ["db_resnet50", "db_mobilenet_v3_large"]
|
20 |
-
RECO_ARCHS = ["crnn_vgg16_bn", "crnn_mobilenet_v3_small", "master", "sar_resnet31"]
|
21 |
-
|
22 |
-
|
23 |
-
def main():
|
24 |
-
|
25 |
-
# Wide mode
|
26 |
-
st.set_page_config(layout="wide")
|
27 |
-
|
28 |
-
# Designing the interface
|
29 |
-
st.title("docTR: Document Text Recognition")
|
30 |
-
# For newline
|
31 |
-
st.write('\n')
|
32 |
-
#
|
33 |
-
st.write('Find more info at: https://github.com/mindee/doctr')
|
34 |
-
# For newline
|
35 |
-
st.write('\n')
|
36 |
-
# Instructions
|
37 |
-
st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*")
|
38 |
-
# Set the columns
|
39 |
-
cols = st.columns((1, 1, 1, 1))
|
40 |
-
cols[0].subheader("Input page")
|
41 |
-
cols[1].subheader("Segmentation heatmap")
|
42 |
-
cols[2].subheader("OCR output")
|
43 |
-
cols[3].subheader("Page reconstitution")
|
44 |
-
|
45 |
-
# Sidebar
|
46 |
-
# File selection
|
47 |
-
st.sidebar.title("Document selection")
|
48 |
-
# Disabling warning
|
49 |
-
# st.set_option('deprecation.showfileUploaderEncoding', False)
|
50 |
-
# Choose your own image
|
51 |
-
uploaded_file = st.sidebar.file_uploader("Upload files", type=['pdf', 'png', 'jpeg', 'jpg'])
|
52 |
-
if uploaded_file is not None:
|
53 |
-
if uploaded_file.name.endswith('.pdf'):
|
54 |
-
doc = DocumentFile.from_pdf(uploaded_file.read())
|
55 |
-
else:
|
56 |
-
doc = DocumentFile.from_images(uploaded_file.read())
|
57 |
-
page_idx = st.sidebar.selectbox("Page selection", [idx + 1 for idx in range(len(doc))]) - 1
|
58 |
-
cols[0].image(doc[page_idx])
|
59 |
-
|
60 |
-
# Model selection
|
61 |
-
st.sidebar.title("Model selection")
|
62 |
-
det_arch = st.sidebar.selectbox("Text detection model", DET_ARCHS)
|
63 |
-
reco_arch = st.sidebar.selectbox("Text recognition model", RECO_ARCHS)
|
64 |
-
|
65 |
-
# For newline
|
66 |
-
st.sidebar.write('\n')
|
67 |
-
|
68 |
-
if st.sidebar.button("Analyze page"):
|
69 |
-
|
70 |
-
if uploaded_file is None:
|
71 |
-
st.sidebar.write("Please upload a document")
|
72 |
-
|
73 |
-
else:
|
74 |
-
with st.spinner('Loading model...'):
|
75 |
-
predictor = ocr_predictor(det_arch, reco_arch, pretrained=True)
|
76 |
-
|
77 |
-
with st.spinner('Analyzing...'):
|
78 |
|
79 |
-
|
80 |
-
processed_batches = predictor.det_predictor.pre_processor([doc[page_idx]])
|
81 |
-
out = predictor.det_predictor.model(processed_batches[0], return_model_output=True)
|
82 |
-
seg_map = out["out_map"]
|
83 |
-
seg_map = tf.squeeze(seg_map[0, ...], axis=[2])
|
84 |
-
seg_map = cv2.resize(seg_map.numpy(), (doc[page_idx].shape[1], doc[page_idx].shape[0]),
|
85 |
-
interpolation=cv2.INTER_LINEAR)
|
86 |
-
# Plot the raw heatmap
|
87 |
-
fig, ax = plt.subplots()
|
88 |
-
ax.imshow(seg_map)
|
89 |
-
ax.axis('off')
|
90 |
-
cols[1].pyplot(fig)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
cols[2].pyplot(fig)
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
cols[3].image(img, clamp=True)
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
if __name__ ==
|
108 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import pytesseract
|
|
|
|
|
|
|
5 |
import cv2
|
6 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# def predict(input_img):
|
11 |
+
# predictions = pipeline(input_img)
|
12 |
+
# return input_img, {p["label"]: p["score"] for p in predictions}
|
|
|
13 |
|
14 |
+
def recognize(input_img):
|
15 |
+
text = pytesseract.image_to_string(Image.open("./data/" + filename))
|
16 |
+
return input_img, text
|
|
|
17 |
|
18 |
+
gradio_app = gr.Interface(
|
19 |
+
recognize,
|
20 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Name Here..."),
|
21 |
+
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
22 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
23 |
|
24 |
+
inputs=[gr.Image(label="Upload an Image", type="pil")],
|
25 |
+
outputs=[gr.Textbox(label="Text in the Image")],
|
26 |
+
|
27 |
+
title="Extrate Text From Image",
|
28 |
+
)
|
29 |
|
30 |
+
if __name__ == "__main__":
|
31 |
+
gradio_app.launch()
|