Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,12 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import pytesseract
|
5 |
import easyocr
|
6 |
import cv2
|
7 |
import os
|
8 |
-
|
9 |
-
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
10 |
-
|
11 |
-
# def predict(input_img):
|
12 |
-
# predictions = pipeline(input_img)
|
13 |
-
# return input_img, {p["label"]: p["score"] for p in predictions}
|
14 |
-
|
15 |
-
# def recognize(input_img):
|
16 |
-
# text = pytesseract.image_to_string(Image.open("./data/" + filename))
|
17 |
-
# return input_img, text
|
18 |
-
|
19 |
-
# gradio_app = gr.Interface(
|
20 |
-
# recognize,
|
21 |
-
# inputs=[gr.Image(label="Upload an Image", type="pil")],
|
22 |
-
# outputs=[gr.Textbox(label="Text in the Image")],
|
23 |
-
|
24 |
-
# title="Extrate Text From Image",
|
25 |
-
# )
|
26 |
-
|
27 |
-
# if __name__ == "__main__":
|
28 |
-
# gradio_app.launch(server_port=8756)
|
29 |
-
|
30 |
-
|
31 |
-
import os
|
32 |
|
33 |
import matplotlib.pyplot as plt
|
34 |
-
import streamlit as st
|
35 |
-
|
36 |
-
import cv2
|
37 |
-
import tensorflow as tf
|
38 |
-
from PIL import Image
|
39 |
-
import pytesseract
|
40 |
|
41 |
DET_ARCHS = ["pytesseract", "easyocr"]
|
42 |
|
@@ -83,7 +53,7 @@ def main():
|
|
83 |
else:
|
84 |
with st.spinner(type(doc)):
|
85 |
if det_arch == 'pytesseract':
|
86 |
-
predictor = pytesseract.image_to_string(doc)
|
87 |
else:
|
88 |
reader = easyocr.Reader(['en'])
|
89 |
predictor = reader.readtext(doc, detail = 0)
|
@@ -97,4 +67,27 @@ def main():
|
|
97 |
|
98 |
|
99 |
if __name__ == '__main__':
|
100 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from PIL import Image
|
2 |
import pytesseract
|
3 |
import easyocr
|
4 |
import cv2
|
5 |
import os
|
6 |
+
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
DET_ARCHS = ["pytesseract", "easyocr"]
|
12 |
|
|
|
53 |
else:
|
54 |
with st.spinner(type(doc)):
|
55 |
if det_arch == 'pytesseract':
|
56 |
+
predictor = pytesseract.image_to_string(Image.open(BytesIO(doc)))
|
57 |
else:
|
58 |
reader = easyocr.Reader(['en'])
|
59 |
predictor = reader.readtext(doc, detail = 0)
|
|
|
67 |
|
68 |
|
69 |
if __name__ == '__main__':
|
70 |
+
main()
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
75 |
+
|
76 |
+
# def predict(input_img):
|
77 |
+
# predictions = pipeline(input_img)
|
78 |
+
# return input_img, {p["label"]: p["score"] for p in predictions}
|
79 |
+
|
80 |
+
# def recognize(input_img):
|
81 |
+
# text = pytesseract.image_to_string(Image.open("./data/" + filename))
|
82 |
+
# return input_img, text
|
83 |
+
|
84 |
+
# gradio_app = gr.Interface(
|
85 |
+
# recognize,
|
86 |
+
# inputs=[gr.Image(label="Upload an Image", type="pil")],
|
87 |
+
# outputs=[gr.Textbox(label="Text in the Image")],
|
88 |
+
|
89 |
+
# title="Extrate Text From Image",
|
90 |
+
# )
|
91 |
+
|
92 |
+
# if __name__ == "__main__":
|
93 |
+
# gradio_app.launch(server_port=8756)
|