import os import matplotlib.pyplot as plt import streamlit as st os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import cv2 import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices('GPU') if any(gpu_devices): tf.config.experimental.set_memory_growth(gpu_devices[0], True) from doctr.io import DocumentFile from doctr.models import ocr_predictor from doctr.utils.visualization import visualize_page DET_ARCHS = ["db_resnet50", "db_mobilenet_v3_large"] RECO_ARCHS = ["crnn_vgg16_bn", "crnn_mobilenet_v3_small", "master", "sar_resnet31"] def main(): # Wide mode st.set_page_config(layout="wide") # Designing the interface st.title("docTR: Document Text Recognition") # For newline st.write('\n') # st.write('Find more info at: https://github.com/mindee/doctr') # For newline st.write('\n') # Instructions st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*") # Set the columns cols = st.columns((1, 1, 1, 1)) cols[0].subheader("Input page") cols[1].subheader("Segmentation heatmap") cols[2].subheader("OCR output") cols[3].subheader("Page reconstitution") # Sidebar # File selection st.sidebar.title("Document selection") # Disabling warning # st.set_option('deprecation.showfileUploaderEncoding', False) # Choose your own image uploaded_file = st.sidebar.file_uploader("Upload files", type=['pdf', 'png', 'jpeg', 'jpg']) if uploaded_file is not None: if uploaded_file.name.endswith('.pdf'): doc = DocumentFile.from_pdf(uploaded_file.read()) else: doc = DocumentFile.from_images(uploaded_file.read()) page_idx = st.sidebar.selectbox("Page selection", [idx + 1 for idx in range(len(doc))]) - 1 cols[0].image(doc[page_idx]) # Model selection st.sidebar.title("Model selection") det_arch = st.sidebar.selectbox("Text detection model", DET_ARCHS) reco_arch = st.sidebar.selectbox("Text recognition model", RECO_ARCHS) # For newline st.sidebar.write('\n') if st.sidebar.button("Analyze page"): if uploaded_file is None: st.sidebar.write("Please upload a document") else: with st.spinner('Loading model...'): predictor = ocr_predictor(det_arch, reco_arch, pretrained=True) with st.spinner('Analyzing...'): # Forward the image to the model processed_batches = predictor.det_predictor.pre_processor([doc[page_idx]]) out = predictor.det_predictor.model(processed_batches[0], return_model_output=True) seg_map = out["out_map"] seg_map = tf.squeeze(seg_map[0, ...], axis=[2]) seg_map = cv2.resize(seg_map.numpy(), (doc[page_idx].shape[1], doc[page_idx].shape[0]), interpolation=cv2.INTER_LINEAR) # Plot the raw heatmap fig, ax = plt.subplots() ax.imshow(seg_map) ax.axis('off') cols[1].pyplot(fig) # Plot OCR output out = predictor([doc[page_idx]]) fig = visualize_page(out.pages[0].export(), doc[page_idx], interactive=False) cols[2].pyplot(fig) # Page reconsitution under input page page_export = out.pages[0].export() img = out.pages[0].synthesize() cols[3].image(img, clamp=True) # Display JSON st.markdown("\nHere are your analysis results in JSON format:") st.json(page_export) if __name__ == '__main__': main()