import os import sys from torchvision.transforms import functional sys.modules["torchvision.transforms.functional_tensor"] = functional from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from realesrgan.utils import RealESRGANer import torch import cv2 import gradio as gr #Download Required Models if not os.path.exists('realesr-general-x4v3.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") if not os.path.exists('GFPGANv1.2.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") if not os.path.exists('GFPGANv1.3.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('RestoreFormer.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) # Save Image to the Directory # os.makedirs('output', exist_ok=True) def upscaler(img, version, scale): try: img = cv2.imread(img, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' elif len(img.shape) == 2: img_mode = None img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) else: img_mode = None h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) face_enhancer = GFPGANer( model_path=f'{version}.pth', upscale=2, arch='RestoreFormer' if version=='RestoreFormer' else 'clean', channel_multiplier=2, bg_upsampler=upsampler ) try: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) except RuntimeError as error: print('Error', error) try: if scale != 2: interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 h, w = img.shape[0:2] output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) except Exception as error: print('wrong scale input.', error) # Save Image to the Directory # ext = os.path.splitext(os.path.basename(str(img)))[1] # if img_mode == 'RGBA': # ext = 'png' # else: # ext = 'jpg' # # save_path = f'output/out.{ext}' # cv2.imwrite(save_path, output) # return output, save_path output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) return output except Exception as error: print('global exception', error) return None, None if __name__ == "__main__": title = "Image Upscaler & Restoring [GFPGAN Algorithm]" demo = gr.Interface( upscaler, [ gr.Image(type="filepath", label="Input"), gr.Radio(['GFPGANv1.2', 'GFPGANv1.3', 'GFPGANv1.4', 'RestoreFormer'], type="value", label='version'), gr.Number(label="Rescaling factor"), ], [ gr.Image(type="numpy", label="Output (The whole image)"), ], title=title, allow_flagging="never" ) demo.queue() demo.launch()