File size: 5,665 Bytes
12b7f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import math
import cv2
import trimesh
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

import nvdiffrast.torch as dr
from mesh import Mesh, safe_normalize

def scale_img_nhwc(x, size, mag='bilinear', min='bilinear'):
    assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
    y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
    if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
        y = torch.nn.functional.interpolate(y, size, mode=min)
    else: # Magnification
        if mag == 'bilinear' or mag == 'bicubic':
            y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
        else:
            y = torch.nn.functional.interpolate(y, size, mode=mag)
    return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC

def scale_img_hwc(x, size, mag='bilinear', min='bilinear'):
    return scale_img_nhwc(x[None, ...], size, mag, min)[0]

def scale_img_nhw(x, size, mag='bilinear', min='bilinear'):
    return scale_img_nhwc(x[..., None], size, mag, min)[..., 0]

def scale_img_hw(x, size, mag='bilinear', min='bilinear'):
    return scale_img_nhwc(x[None, ..., None], size, mag, min)[0, ..., 0]

def trunc_rev_sigmoid(x, eps=1e-6):
    x = x.clamp(eps, 1 - eps)
    return torch.log(x / (1 - x))

def make_divisible(x, m=8):
    return int(math.ceil(x / m) * m)

class Renderer(nn.Module):
    def __init__(self, opt):
        
        super().__init__()

        self.opt = opt

        self.mesh = Mesh.load(self.opt.mesh, resize=False)

        if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
            self.glctx = dr.RasterizeGLContext()
        else:
            self.glctx = dr.RasterizeCudaContext()
        
        # extract trainable parameters
        self.v_offsets = nn.Parameter(torch.zeros_like(self.mesh.v))
        self.raw_albedo = nn.Parameter(trunc_rev_sigmoid(self.mesh.albedo))


    def get_params(self):

        params = [
            {'params': self.raw_albedo, 'lr': self.opt.texture_lr},
        ]

        if self.opt.train_geo:
            params.append({'params': self.v_offsets, 'lr': self.opt.geom_lr})

        return params

    @torch.no_grad()
    def export_mesh(self, save_path):
        self.mesh.v = (self.mesh.v + self.v_offsets).detach()
        self.mesh.albedo = torch.sigmoid(self.raw_albedo.detach())
        self.mesh.write(save_path)

    
    def render(self, pose, proj, h0, w0, ssaa=1, bg_color=1, texture_filter='linear-mipmap-linear'):
        
        # do super-sampling
        if ssaa != 1:
            h = make_divisible(h0 * ssaa, 8)
            w = make_divisible(w0 * ssaa, 8)
        else:
            h, w = h0, w0
        
        results = {}

        # get v
        if self.opt.train_geo:
            v = self.mesh.v + self.v_offsets # [N, 3]
        else:
            v = self.mesh.v

        pose = torch.from_numpy(pose.astype(np.float32)).to(v.device)
        proj = torch.from_numpy(proj.astype(np.float32)).to(v.device)

        # get v_clip and render rgb
        v_cam = torch.matmul(F.pad(v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
        v_clip = v_cam @ proj.T

        rast, rast_db = dr.rasterize(self.glctx, v_clip, self.mesh.f, (h, w))

        alpha = (rast[0, ..., 3:] > 0).float()
        depth, _ = dr.interpolate(-v_cam[..., [2]], rast, self.mesh.f) # [1, H, W, 1]
        depth = depth.squeeze(0) # [H, W, 1]

        texc, texc_db = dr.interpolate(self.mesh.vt.unsqueeze(0).contiguous(), rast, self.mesh.ft, rast_db=rast_db, diff_attrs='all')
        albedo = dr.texture(self.raw_albedo.unsqueeze(0), texc, uv_da=texc_db, filter_mode=texture_filter) # [1, H, W, 3]
        albedo = torch.sigmoid(albedo)
        # get vn and render normal
        if self.opt.train_geo:
            i0, i1, i2 = self.mesh.f[:, 0].long(), self.mesh.f[:, 1].long(), self.mesh.f[:, 2].long()
            v0, v1, v2 = v[i0, :], v[i1, :], v[i2, :]

            face_normals = torch.cross(v1 - v0, v2 - v0)
            face_normals = safe_normalize(face_normals)
            
            vn = torch.zeros_like(v)
            vn.scatter_add_(0, i0[:, None].repeat(1,3), face_normals)
            vn.scatter_add_(0, i1[:, None].repeat(1,3), face_normals)
            vn.scatter_add_(0, i2[:, None].repeat(1,3), face_normals)

            vn = torch.where(torch.sum(vn * vn, -1, keepdim=True) > 1e-20, vn, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device))
        else:
            vn = self.mesh.vn
        
        normal, _ = dr.interpolate(vn.unsqueeze(0).contiguous(), rast, self.mesh.fn)
        normal = safe_normalize(normal[0])

        # rotated normal (where [0, 0, 1] always faces camera)
        rot_normal = normal @ pose[:3, :3]
        viewcos = rot_normal[..., [2]]

        # antialias
        albedo = dr.antialias(albedo, rast, v_clip, self.mesh.f).squeeze(0) # [H, W, 3]
        albedo = alpha * albedo + (1 - alpha) * bg_color

        # ssaa
        if ssaa != 1:
            albedo = scale_img_hwc(albedo, (h0, w0))
            alpha = scale_img_hwc(alpha, (h0, w0))
            depth = scale_img_hwc(depth, (h0, w0))
            normal = scale_img_hwc(normal, (h0, w0))
            viewcos = scale_img_hwc(viewcos, (h0, w0))

        results['image'] = albedo.clamp(0, 1)
        results['alpha'] = alpha
        results['depth'] = depth
        results['normal'] = (normal + 1) / 2
        results['viewcos'] = viewcos

        return results