File size: 17,188 Bytes
2a5630b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import ast
from safetensors import safe_open
import torch
from dataclasses import dataclass
from typing import Optional, Union, List

def update_args_from_yaml(group, args, parser):
    for key, value in group.items():
        if isinstance(value, dict):
            update_args_from_yaml(value, args, parser)
        else:
            if value == 'None' or value == 'null':
                value = None
            else:
                arg_type = next((action.type for action in parser._actions if action.dest == key), str)
                
                if arg_type is ast.literal_eval:
                    pass
                elif arg_type is not None and not isinstance(value, arg_type):
                    try:
                        value = arg_type(value)
                    except ValueError as e:
                        raise ValueError(f"Cannot convert {key} to {arg_type}: {e}")

            setattr(args, key, value)


def safe_load(model_path):
    assert "safetensors" in model_path
    state_dict = {}
    with safe_open(model_path, framework="pt", device="cpu") as f:
        for k in f.keys():
            state_dict[k] = f.get_tensor(k) 
    return state_dict


@dataclass
class DDIMSchedulerStepOutput:
    prev_sample: torch.Tensor  # x_{t-1}
    pred_original_sample: Optional[torch.Tensor] = None  # x0


@dataclass
class DDIMSchedulerConversionOutput:
    pred_epsilon: torch.Tensor
    pred_original_sample: torch.Tensor
    pred_velocity: torch.Tensor


class DDIMScheduler:
    prediction_types = ["epsilon", "sample", "v_prediction"]

    def __init__(
        self,
        num_train_timesteps: int,
        num_inference_timesteps: int,
        betas: torch.Tensor,
        set_alpha_to_one: bool = True,
        set_inference_timesteps_from_pure_noise: bool = True,
        inference_timesteps: Union[str, List[int]] = "trailing",
        device: Optional[Union[str, torch.device]] = None,
        dtype: torch.dtype = torch.float32,
        skip_step:bool = False,
        original_inference_step: int=20,
        steps_offset: int=0,
        
    ):
        assert num_train_timesteps > 0
        assert num_train_timesteps >= num_inference_timesteps
        assert num_train_timesteps == betas.size(0)
        assert betas.ndim == 1
        # self.user_name = user_name
        # self.run_time = Recorder.format_time()
        # self.task_name = 'AutoAIGC_%s' % str(self.run_time)
        self.module_name = 'AutoAIGC'
        self.config_list = {"num_train_timesteps": num_train_timesteps,
                            "num_inference_timesteps": num_inference_timesteps,
                            "betas": betas,
                            "set_alpha_to_one": set_alpha_to_one,
                            "set_inference_timesteps_from_pure_noise": set_inference_timesteps_from_pure_noise,
                            "inference_timesteps": inference_timesteps}
        self.module_info = str(self.config_list)

        # self.upload_logger(user_name=user_name)

        device = device or betas.device

        self.num_train_timesteps = num_train_timesteps
        self.num_inference_steps = num_inference_timesteps
        self.steps_offset = steps_offset

        self.betas = betas # .to(device=device, dtype=dtype)
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.final_alpha_cumprod = torch.tensor(1.0, device=device, dtype=dtype) if set_alpha_to_one else self.alphas_cumprod[0]

        if isinstance(inference_timesteps, torch.Tensor):
            assert len(inference_timesteps) == num_inference_timesteps
            self.timesteps = inference_timesteps.cpu().numpy().tolist()
        elif set_inference_timesteps_from_pure_noise:
            if inference_timesteps == "trailing":
                # [999, 949, 899, 849, 799, 749, 699, 649, 599, 549, 499, 449, 399, 349, 299, 249, 199, 149,  99,  49]
                if skip_step:  #  ?
                    original_timesteps = torch.arange(num_train_timesteps - 1, -1, -num_train_timesteps / original_inference_step, device=device).round().int().tolist()
                    skipping_step = len(original_timesteps) // num_inference_timesteps
                    self.timesteps = original_timesteps[::skipping_step][:num_inference_timesteps]
                else:  # [999, 899, 799, 699, 599, 499, 399, 299, 199, 99]
                    self.timesteps = torch.arange(num_train_timesteps - 1, -1, -num_train_timesteps / num_inference_timesteps, device=device).round().int().tolist()
            elif inference_timesteps == "linspace":
                # Fixed DDIM timestep. Make sure the timestep starts from 999.
                # Example 20 steps: 
                # [999, 946, 894, 841, 789, 736, 684, 631, 578, 526, 473, 421, 368, 315, 263, 210, 158, 105,  53,   0]
                # [999,      888,      777,      666,      555,      444,      333,      222,      111,       0]
                self.timesteps = torch.linspace(0, num_train_timesteps - 1, num_inference_timesteps, device=device).round().int().flip(0).tolist()
            elif inference_timesteps == "leading":
                step_ratio = num_train_timesteps // num_inference_timesteps
                # # creates integer timesteps by multiplying by ratio
                # # casting to int to avoid issues when num_inference_step is power of 3
                self.timesteps = torch.arange(0, num_inference_timesteps).mul(step_ratio).round().flip(dims=[0]) #.clone().long()
                # self.timesteps += self.steps_offset
            
                # Original SD and DDIM paper may have a bug: <https://github.com/huggingface/diffusers/issues/2585>
                # The inference timestep does not start from 999.
                # Example 20 steps: 
                # [950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100,  50,   0]
                # [     900,      800,      700,      600,      500,      400,      300,      200,      100,        0]
                # self.timesteps = torch.arange(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps, device=self.device, dtype=torch.int).flip(0)
                # self.timesteps = list(reversed(range(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps)))
            else:
                raise NotImplementedError
                
        elif inference_timesteps == "leading":
            # Original SD and DDIM paper may have a bug: <https://github.com/huggingface/diffusers/issues/2585>
            # The inference timestep does not start from 999.
            # Example 20 steps: 
            # [950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100,  50,   0]
            # [     900,      800,      700,      600,      500,      400,      300,      200,      100,        0]
            # self.timesteps = torch.arange(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps, device=self.device, dtype=torch.int).flip(0)
            self.timesteps = list(reversed(range(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps)))

        else:
            self.timesteps = list(reversed(range(0, num_train_timesteps, num_train_timesteps // num_inference_timesteps)))
            # raise NotImplementedError

        self.to(device=device)


    def to(self, device):
        self.betas = self.betas.to(device)
        self.alphas_cumprod = self.alphas_cumprod.to(device)
        self.final_alpha_cumprod = self.final_alpha_cumprod.to(device)
        # self.timesteps = self.timesteps.to(device)
        return self
    
    def step(
        self,
        model_output: torch.Tensor,
        model_output_type: str,
        timestep: Union[torch.Tensor, int],
        sample: torch.Tensor,
        eta: float = 0.0,
        clip_sample: bool = False,
        dynamic_threshold: Optional[float] = None,
        variance_noise: Optional[torch.Tensor] = None,
    ) -> DDIMSchedulerStepOutput:
        # 1. get previous step value (t-1)
        if isinstance(timestep, int):
            # 1. get previous step value (t-1)
            idx = self.timesteps.index(timestep)
            prev_timestep = self.timesteps[idx + 1] if idx < self.num_inference_steps - 1 else None

            # 2. compute alphas, betas
            alpha_prod_t = self.alphas_cumprod[timestep]
            alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep is not None else self.final_alpha_cumprod
            beta_prod_t = 1 - alpha_prod_t
            beta_prod_t_prev = 1 - alpha_prod_t_prev
        else:
            timesteps = torch.tensor(self.timesteps).to(timestep.device)
            idx = timestep.reshape(-1, 1).eq(timesteps.reshape(1, -1)).nonzero()[:, 1] # 找到 timestep 在 timesteps 中的索引 idx
            # 根据idx找到idx+1对应的timesteps元素,也就是下一个时间步。如果idx+1超出了timesteps的长度,它会被限制在self.num_inference_steps - 1
            prev_timestep = timesteps[idx.add(1).clamp_max(self.num_inference_steps - 1)]

            assert (prev_timestep is not None)
            # 2. compute alphas, betas
            alpha_prod_t = self.alphas_cumprod[timestep]
            alpha_prod_t_prev = self.alphas_cumprod[prev_timestep]
            alpha_prod_t_prev = torch.where(prev_timestep < 0, self.final_alpha_cumprod, alpha_prod_t_prev)
            beta_prod_t = 1 - alpha_prod_t
            beta_prod_t_prev = 1 - alpha_prod_t_prev

            bs = timestep.size(0)
            alpha_prod_t = alpha_prod_t.view(bs, 1, 1, 1)
            alpha_prod_t_prev = alpha_prod_t_prev.view(bs, 1, 1, 1)
            beta_prod_t = beta_prod_t.view(bs, 1, 1, 1)
            beta_prod_t_prev = beta_prod_t_prev.view(bs, 1, 1, 1)

        # # 2. compute alphas, betas
        # alpha_prod_t = self.alphas_cumprod[timestep]
        # alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep is not None else self.final_alpha_cumprod
        # beta_prod_t = 1 - alpha_prod_t
        # beta_prod_t_prev = 1 - alpha_prod_t_prev
        # rcfg
        self.stock_alpha_prod_t_prev = alpha_prod_t_prev
        self.stock_beta_prod_t_prev = beta_prod_t_prev
            
        # rcfg
        self.stock_alpha_prod_t_prev = alpha_prod_t_prev
        self.stock_beta_prod_t_prev = beta_prod_t_prev

        # 3. compute predicted original sample from predicted noise also called
        model_output_conversion = self.convert_output(model_output, model_output_type, sample, timestep)
        pred_original_sample = model_output_conversion.pred_original_sample
        pred_epsilon = model_output_conversion.pred_epsilon

        # 4. Clip or threshold "predicted x_0"
        if clip_sample:
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
            pred_epsilon = self.convert_output(pred_original_sample, "sample", sample, timestep).pred_epsilon

        if dynamic_threshold is not None:
            # Dynamic thresholding in https://arxiv.org/abs/2205.11487
            dynamic_max_val = pred_original_sample \
                .flatten(1) \
                .abs() \
                .float() \
                .quantile(dynamic_threshold, dim=1) \
                .type_as(pred_original_sample) \
                .clamp_min(1) \
                .view(-1, *([1] * (pred_original_sample.ndim - 1)))
            pred_original_sample = pred_original_sample.clamp(-dynamic_max_val, dynamic_max_val) / dynamic_max_val
            pred_epsilon = self.convert_output(pred_original_sample, "sample", sample, timestep).pred_epsilon

        # 5. compute variance: "sigma_t(η)" -> see formula (16) from https://arxiv.org/pdf/2010.02502.pdf
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
        std_dev_t = eta * variance ** (0.5)

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        # 8. add "random noise" if needed.
        if eta > 0:
            if variance_noise is None:
                variance_noise = torch.randn_like(model_output)
            prev_sample = prev_sample + std_dev_t * variance_noise

        return DDIMSchedulerStepOutput(
            prev_sample=prev_sample, # x_{t-1}
            pred_original_sample=pred_original_sample # x0
            )

    def add_noise(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: Union[torch.Tensor, int],
        replace_noise=True
    ) -> torch.Tensor:
        alpha_prod_t = self.alphas_cumprod[timesteps].reshape(-1, *([1] * (original_samples.ndim - 1)))
        if replace_noise:
            indices = (timesteps == 999).nonzero()
            if indices.numel() > 0:
                alpha_prod_t[indices] = 0
        return alpha_prod_t ** (0.5) * original_samples + (1 - alpha_prod_t) ** (0.5) * noise
    
    def add_noise_lcm(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timestep: Union[torch.Tensor, int],
    ) -> torch.Tensor:
        if isinstance(timestep, int):
            # 1. get previous step value (t-1)
            idx = self.timesteps.index(timestep)
            prev_timestep = self.timesteps[idx + 1] if idx < self.num_inference_steps - 1 else None

            # 2. compute alphas, betas
            alpha_prod_t = self.alphas_cumprod[timestep]
            alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep is not None else self.final_alpha_cumprod
            beta_prod_t = 1 - alpha_prod_t
            beta_prod_t_prev = 1 - alpha_prod_t_prev
        else:
            timesteps = torch.tensor(self.timesteps).to(timestep.device)
            idx = timestep.reshape(-1, 1).eq(timesteps.reshape(1, -1)).nonzero()[:, 1] # 找到 timestep 在 timesteps 中的索引 idx
            prev_timestep = timesteps[idx.add(1).clamp_max(self.num_inference_steps - 1)]

            assert (prev_timestep is not None)
            # 2. compute alphas, betas
            alpha_prod_t = self.alphas_cumprod[timestep]
            alpha_prod_t_prev = self.alphas_cumprod[prev_timestep]
            alpha_prod_t_prev = torch.where(prev_timestep < 0, self.final_alpha_cumprod, alpha_prod_t_prev)
            beta_prod_t = 1 - alpha_prod_t
            beta_prod_t_prev = 1 - alpha_prod_t_prev

            bs = timestep.size(0)
            alpha_prod_t = alpha_prod_t.view(bs, 1, 1, 1)
            alpha_prod_t_prev = alpha_prod_t_prev.view(bs, 1, 1, 1)
            beta_prod_t = beta_prod_t.view(bs, 1, 1, 1)
            beta_prod_t_prev = beta_prod_t_prev.view(bs, 1, 1, 1)

        alpha_prod_t_prev = alpha_prod_t_prev.reshape(-1, *([1] * (original_samples.ndim - 1)))
        return alpha_prod_t_prev ** (0.5) * original_samples + (1 - alpha_prod_t_prev) ** (0.5) * noise


    def convert_output(
        self,
        model_output: torch.Tensor,
        model_output_type: str,
        sample: torch.Tensor,
        timesteps: Union[torch.Tensor, int]
    ) -> DDIMSchedulerConversionOutput:
        assert model_output_type in self.prediction_types

        alpha_prod_t = self.alphas_cumprod[timesteps].reshape(-1, *([1] * (sample.ndim - 1)))
        beta_prod_t = 1 - alpha_prod_t

        if model_output_type == "epsilon":
            pred_epsilon = model_output
            pred_original_sample = (sample - beta_prod_t ** (0.5) * pred_epsilon) / alpha_prod_t ** (0.5)
            pred_velocity = alpha_prod_t ** (0.5) * pred_epsilon - (1 - alpha_prod_t) ** (0.5) * pred_original_sample
        elif model_output_type == "sample":
            pred_original_sample = model_output
            pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
            pred_velocity = alpha_prod_t ** (0.5) * pred_epsilon - (1 - alpha_prod_t) ** (0.5) * pred_original_sample
        elif model_output_type == "v_prediction":
            pred_velocity = model_output
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
            pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
        else:
            raise ValueError("Unknown prediction type")

        return DDIMSchedulerConversionOutput(
            pred_epsilon=pred_epsilon,
            pred_original_sample=pred_original_sample,
            pred_velocity=pred_velocity)

    def get_velocity(
        self,
        sample: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor
    ) -> torch.FloatTensor:
        alpha_prod_t = self.alphas_cumprod[timesteps].reshape(-1, *([1] * (sample.ndim - 1)))
        return alpha_prod_t ** (0.5) * noise - (1 - alpha_prod_t) ** (0.5) * sample