Spaces:
Running
Running
File size: 7,158 Bytes
2d8310a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import time
import requests
import json
import os
from urllib3.util.retry import Retry
from requests.adapters import HTTPAdapter
API_URL = os.getenv("API_URL")
API_KEY = os.getenv("API_KEY")
print(f"API_URL: {API_URL}")
print(f"API_KEY: {API_KEY}")
url = f"{API_URL}/v1/chat/completions"
# The headers for the HTTP request
headers = {
"accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}",
}
def is_valid_json(data):
try:
parsed_data = json.loads(data)
return True, parsed_data
except ValueError as e:
return False, str(e)
with gr.Blocks() as demo:
markup = gr.Markdown(
"""
# Phi-2
This is a demo of the Phi-2 quantized model in GGUF (phi-2.Q5_K_M.gguf) hosted on K8s cluster.
The original models can be found [MaziyarPanahi/MaziyarPanahi/phi-2-GGUF](https://huggingface.co/MaziyarPanahi/phi-2-GGUF)"""
)
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(lines=1, label="User Message")
clear = gr.Button("Clear")
with gr.Row():
with gr.Column(scale=2):
system_prompt_input = gr.Textbox(
label="System Prompt",
placeholder="Type system prompt here...",
value="You are a helpful assistant.",
)
temperature_input = gr.Slider(
label="Temperature", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
max_new_tokens_input = gr.Slider(
label="Max New Tokens", minimum=0, maximum=1024, value=256, step=1
)
with gr.Column(scale=2):
top_p_input = gr.Slider(
label="Top P", minimum=0.0, maximum=1.0, value=0.95, step=0.01
)
top_k_input = gr.Slider(
label="Top K", minimum=1, maximum=100, value=50, step=1
)
repetition_penalty_input = gr.Slider(
label="Repetition Penalty",
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.01,
)
def update_globals(
system_prompt, temperature, max_new_tokens, top_p, top_k, repetition_penalty
):
global global_system_prompt, global_temperature, global_max_new_tokens, global_top_p, global_repetition_penalty, global_top_k
global_system_prompt = system_prompt
global_temperature = temperature
global_max_new_tokens = max_new_tokens
global_top_p = top_p
global_top_k = top_k
global_repetition_penalty = repetition_penalty
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(
history,
system_prompt,
temperature,
max_new_tokens,
top_p,
top_k,
repetition_penalty,
):
print(f"History in bot: {history}")
print(f"System Prompt: {system_prompt}")
print(f"Temperature: {temperature}")
print(f"Max New Tokens: {max_new_tokens}")
print(f"Top P: {top_p}")
print(f"Top K: {top_k}")
print(f"Repetition Penalty: {repetition_penalty}")
history_messages = [{"content": h[0], "role": "user"} for h in history if h[0]]
history[-1][1] = ""
sys_msg = [
{
"content": (
system_prompt if system_prompt else "You are a helpful assistant."
),
"role": "system",
}
]
history_messages = sys_msg + history_messages
print(history_messages)
# Create a session object
session = requests.Session()
# Define the retry strategy
retries = Retry(
total=5, # Total number of retries to allow
backoff_factor=1, # A backoff factor to apply between attempts
status_forcelist=[
500,
502,
503,
504,
], # A set of HTTP status codes that we should force a retry on
allowed_methods=[
"HEAD",
"GET",
"OPTIONS",
"POST",
], # HTTP methods to retry on
)
data = {
"messages": history_messages,
"stream": True,
"temprature": temperature,
"top_k": top_k,
"top_p": top_p,
"seed": 42,
"repeat_penalty": repetition_penalty,
"chat_format": "mistral-instruct",
"max_tokens": max_new_tokens,
# "response_format": {
# "type": "json_object",
# },
}
# Mount it for http usage
session.mount("http://", HTTPAdapter(max_retries=retries))
# Making the POST request with increased timeout and retry logic
try:
response = session.post(
url,
headers=headers,
data=json.dumps(data),
stream=True,
timeout=(10, 30),
)
if response.status_code == 200:
for line in response.iter_lines():
# Filter out keep-alive new lines
if line:
data = line.decode("utf-8").lstrip("data: ")
# Check if the examples are valid
valid_check = is_valid_json(data)
if valid_check[0]:
try:
# Attempt to parse the JSON dataa
# json_data = json.loads(data)
json_data = valid_check[1]
delta_content = (
json_data.get("choices", [{}])[0]
.get("delta", {})
.get("content", "")
)
if delta_content: # Ensure there's content to print
history[-1][1] += delta_content
time.sleep(0.05)
yield history
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e} date: {data}")
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=True, concurrency_limit=10
).then(
bot,
inputs=[
chatbot,
system_prompt_input,
temperature_input,
max_new_tokens_input,
top_p_input,
top_k_input,
repetition_penalty_input,
],
outputs=chatbot,
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue(default_concurrency_limit=20, max_size=20, api_open=False)
if __name__ == "__main__":
demo.launch(show_api=False, share=False)
|