AURORA / app.py
BennoKrojer's picture
Update app.py
019ad4d verified
from __future__ import annotations
import math
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionInstructPix2PixPipeline
def main():
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("McGill-NLP/AURORA", safety_checker=None).to("cuda")
example_image = Image.open("example.jpg").convert("RGB")
def generate(
input_image: Image.Image,
instruction: str,
steps: int,
seed: int,
text_cfg_scale: float,
image_cfg_scale: float,
):
width, height = input_image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if instruction == "":
return [input_image, seed]
generator = torch.manual_seed(seed)
edited_image = pipe(
instruction, image=input_image,
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
num_inference_steps=steps, generator=generator,
).images[0]
return [seed, text_cfg_scale, image_cfg_scale, edited_image]
def reset():
return ["", 50, 42, 7.5, 1.5, None, None]
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 10px;">
AURORA: Learning Action and Reasoning-Centric Image Editing from Videos and Simulations
</h1>
<p>
AURORA (Action Reasoning Object Attribute) enables training an instruction-guided image editing model that can perform action and reasoning-centric edits, in addition to "simpler" established object, attribute or global edits. <b> We provide an example to showcase this but feel free to pick your own! </b>
</p>""")
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(value="move the lemon to the right of the table", lines=1, label="Edit instruction", interactive=True)
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1, min_width=100):
reset_button = gr.Button("Reset", variant="stop")
with gr.Row():
input_image = gr.Image(value=example_image, label="Input image", type="pil", interactive=True)
edited_image = gr.Image(label=f"Edited image", type="pil", interactive=False)
with gr.Row():
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
seed = gr.Number(value=42, precision=0, label="Seed", interactive=True)
text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
generate_button.click(
fn=generate,
inputs=[
input_image,
instruction,
steps,
seed,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
)
reset_button.click(
fn=reset,
inputs=[],
outputs=[instruction, steps, seed, text_cfg_scale, image_cfg_scale, edited_image, input_image],
)
demo.queue()
demo.launch()
# demo.launch(share=True)
if __name__ == "__main__":
main()