Spaces:
Running
Running
File size: 11,210 Bytes
c0eac48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
from os.path import join as pjoin
import torch
import torch.nn.functional as F
from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
from models.vq.model import RVQVAE, LengthEstimator
from options.eval_option import EvalT2MOptions
from utils.get_opt import get_opt
from utils.fixseed import fixseed
from visualization.joints2bvh import Joint2BVHConvertor
from torch.distributions.categorical import Categorical
from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion
from utils.paramUtil import t2m_kinematic_chain
import numpy as np
clip_version = 'ViT-B/32'
def load_vq_model(vq_opt):
# opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
vq_model = RVQVAE(vq_opt,
vq_opt.dim_pose,
vq_opt.nb_code,
vq_opt.code_dim,
vq_opt.output_emb_width,
vq_opt.down_t,
vq_opt.stride_t,
vq_opt.width,
vq_opt.depth,
vq_opt.dilation_growth_rate,
vq_opt.vq_act,
vq_opt.vq_norm)
ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
map_location='cpu')
model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
vq_model.load_state_dict(ckpt[model_key])
print(f'Loading VQ Model {vq_opt.name} Completed!')
return vq_model, vq_opt
def load_trans_model(model_opt, opt, which_model):
t2m_transformer = MaskTransformer(code_dim=model_opt.code_dim,
cond_mode='text',
latent_dim=model_opt.latent_dim,
ff_size=model_opt.ff_size,
num_layers=model_opt.n_layers,
num_heads=model_opt.n_heads,
dropout=model_opt.dropout,
clip_dim=512,
cond_drop_prob=model_opt.cond_drop_prob,
clip_version=clip_version,
opt=model_opt)
ckpt = torch.load(pjoin(model_opt.checkpoints_dir, model_opt.dataset_name, model_opt.name, 'model', which_model),
map_location='cpu')
model_key = 't2m_transformer' if 't2m_transformer' in ckpt else 'trans'
# print(ckpt.keys())
missing_keys, unexpected_keys = t2m_transformer.load_state_dict(ckpt[model_key], strict=False)
assert len(unexpected_keys) == 0
assert all([k.startswith('clip_model.') for k in missing_keys])
print(f'Loading Transformer {opt.name} from epoch {ckpt["ep"]}!')
return t2m_transformer
def load_res_model(res_opt, vq_opt, opt):
res_opt.num_quantizers = vq_opt.num_quantizers
res_opt.num_tokens = vq_opt.nb_code
res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
cond_mode='text',
latent_dim=res_opt.latent_dim,
ff_size=res_opt.ff_size,
num_layers=res_opt.n_layers,
num_heads=res_opt.n_heads,
dropout=res_opt.dropout,
clip_dim=512,
shared_codebook=vq_opt.shared_codebook,
cond_drop_prob=res_opt.cond_drop_prob,
# codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
share_weight=res_opt.share_weight,
clip_version=clip_version,
opt=res_opt)
ckpt = torch.load(pjoin(res_opt.checkpoints_dir, res_opt.dataset_name, res_opt.name, 'model', 'net_best_fid.tar'),
map_location=opt.device)
missing_keys, unexpected_keys = res_transformer.load_state_dict(ckpt['res_transformer'], strict=False)
assert len(unexpected_keys) == 0
assert all([k.startswith('clip_model.') for k in missing_keys])
print(f'Loading Residual Transformer {res_opt.name} from epoch {ckpt["ep"]}!')
return res_transformer
def load_len_estimator(opt):
model = LengthEstimator(512, 50)
ckpt = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'length_estimator', 'model', 'finest.tar'),
map_location=opt.device)
model.load_state_dict(ckpt['estimator'])
print(f'Loading Length Estimator from epoch {ckpt["epoch"]}!')
return model
if __name__ == '__main__':
parser = EvalT2MOptions()
opt = parser.parse()
fixseed(opt.seed)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
torch.autograd.set_detect_anomaly(True)
dim_pose = 251 if opt.dataset_name == 'kit' else 263
# out_dir = pjoin(opt.check)
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
model_dir = pjoin(root_dir, 'model')
result_dir = pjoin('./generation', opt.ext)
joints_dir = pjoin(result_dir, 'joints')
animation_dir = pjoin(result_dir, 'animations')
os.makedirs(joints_dir, exist_ok=True)
os.makedirs(animation_dir,exist_ok=True)
model_opt_path = pjoin(root_dir, 'opt.txt')
model_opt = get_opt(model_opt_path, device=opt.device)
#######################
######Loading RVQ######
#######################
vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
vq_opt = get_opt(vq_opt_path, device=opt.device)
vq_opt.dim_pose = dim_pose
vq_model, vq_opt = load_vq_model(vq_opt)
model_opt.num_tokens = vq_opt.nb_code
model_opt.num_quantizers = vq_opt.num_quantizers
model_opt.code_dim = vq_opt.code_dim
#################################
######Loading R-Transformer######
#################################
res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
res_opt = get_opt(res_opt_path, device=opt.device)
res_model = load_res_model(res_opt, vq_opt, opt)
assert res_opt.vq_name == model_opt.vq_name
#################################
######Loading M-Transformer######
#################################
t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')
##################################
#####Loading Length Predictor#####
##################################
length_estimator = load_len_estimator(model_opt)
t2m_transformer.eval()
vq_model.eval()
res_model.eval()
length_estimator.eval()
res_model.to(opt.device)
t2m_transformer.to(opt.device)
vq_model.to(opt.device)
length_estimator.to(opt.device)
##### ---- Dataloader ---- #####
opt.nb_joints = 21 if opt.dataset_name == 'kit' else 22
mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
def inv_transform(data):
return data * std + mean
prompt_list = []
length_list = []
est_length = False
if opt.text_prompt != "":
prompt_list.append(opt.text_prompt)
if opt.motion_length == 0:
est_length = True
else:
length_list.append(opt.motion_length)
elif opt.text_path != "":
with open(opt.text_path, 'r') as f:
lines = f.readlines()
for line in lines:
infos = line.split('#')
prompt_list.append(infos[0])
if len(infos) == 1 or (not infos[1].isdigit()):
est_length = True
length_list = []
else:
length_list.append(int(infos[-1]))
else:
raise "A text prompt, or a file a text prompts are required!!!"
# print('loading checkpoint {}'.format(file))
if est_length:
print("Since no motion length are specified, we will use estimated motion lengthes!!")
text_embedding = t2m_transformer.encode_text(prompt_list)
pred_dis = length_estimator(text_embedding)
probs = F.softmax(pred_dis, dim=-1) # (b, ntoken)
token_lens = Categorical(probs).sample() # (b, seqlen)
# lengths = torch.multinomial()
else:
token_lens = torch.LongTensor(length_list) // 4
token_lens = token_lens.to(opt.device).long()
m_length = token_lens * 4
captions = prompt_list
sample = 0
kinematic_chain = t2m_kinematic_chain
converter = Joint2BVHConvertor()
for r in range(opt.repeat_times):
print("-->Repeat %d"%r)
with torch.no_grad():
mids = t2m_transformer.generate(captions, token_lens,
timesteps=opt.time_steps,
cond_scale=opt.cond_scale,
temperature=opt.temperature,
topk_filter_thres=opt.topkr,
gsample=opt.gumbel_sample)
# print(mids)
# print(mids.shape)
mids = res_model.generate(mids, captions, token_lens, temperature=1, cond_scale=5)
pred_motions = vq_model.forward_decoder(mids)
pred_motions = pred_motions.detach().cpu().numpy()
data = inv_transform(pred_motions)
for k, (caption, joint_data) in enumerate(zip(captions, data)):
print("---->Sample %d: %s %d"%(k, caption, m_length[k]))
animation_path = pjoin(animation_dir, str(k))
joint_path = pjoin(joints_dir, str(k))
os.makedirs(animation_path, exist_ok=True)
os.makedirs(joint_path, exist_ok=True)
joint_data = joint_data[:m_length[k]]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.bvh"%(k, r, m_length[k]))
_, ik_joint = converter.convert(joint, filename=bvh_path, iterations=100)
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d.bvh" % (k, r, m_length[k]))
_, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)
save_path = pjoin(animation_path, "sample%d_repeat%d_len%d.mp4"%(k, r, m_length[k]))
ik_save_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.mp4"%(k, r, m_length[k]))
plot_3d_motion(ik_save_path, kinematic_chain, ik_joint, title=caption, fps=20)
plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d.npy"%(k, r, m_length[k])), joint)
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d_ik.npy"%(k, r, m_length[k])), ik_joint) |