File size: 14,820 Bytes
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import torch
from collections import defaultdict
import torch.optim as optim
# import tensorflow as tf
from torch.utils.tensorboard import SummaryWriter
from collections import OrderedDict
from utils.utils import *
from os.path import join as pjoin
from utils.eval_t2m import evaluation_mask_transformer, evaluation_res_transformer
from models.mask_transformer.tools import *

from einops import rearrange, repeat

def def_value():
    return 0.0

class MaskTransformerTrainer:
    def __init__(self, args, t2m_transformer, vq_model):
        self.opt = args
        self.t2m_transformer = t2m_transformer
        self.vq_model = vq_model
        self.device = args.device
        self.vq_model.eval()

        if args.is_train:
            self.logger = SummaryWriter(args.log_dir)


    def update_lr_warm_up(self, nb_iter, warm_up_iter, lr):

        current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
        for param_group in self.opt_t2m_transformer.param_groups:
            param_group["lr"] = current_lr

        return current_lr


    def forward(self, batch_data):

        conds, motion, m_lens = batch_data
        motion = motion.detach().float().to(self.device)
        m_lens = m_lens.detach().long().to(self.device)

        # (b, n, q)
        code_idx, _ = self.vq_model.encode(motion)
        m_lens = m_lens // 4

        conds = conds.to(self.device).float() if torch.is_tensor(conds) else conds

        # loss_dict = {}
        # self.pred_ids = []
        # self.acc = []

        _loss, _pred_ids, _acc = self.t2m_transformer(code_idx[..., 0], conds, m_lens)

        return _loss, _acc

    def update(self, batch_data):
        loss, acc = self.forward(batch_data)

        self.opt_t2m_transformer.zero_grad()
        loss.backward()
        self.opt_t2m_transformer.step()
        self.scheduler.step()

        return loss.item(), acc

    def save(self, file_name, ep, total_it):
        t2m_trans_state_dict = self.t2m_transformer.state_dict()
        clip_weights = [e for e in t2m_trans_state_dict.keys() if e.startswith('clip_model.')]
        for e in clip_weights:
            del t2m_trans_state_dict[e]
        state = {
            't2m_transformer': t2m_trans_state_dict,
            'opt_t2m_transformer': self.opt_t2m_transformer.state_dict(),
            'scheduler':self.scheduler.state_dict(),
            'ep': ep,
            'total_it': total_it,
        }
        torch.save(state, file_name)

    def resume(self, model_dir):
        checkpoint = torch.load(model_dir, map_location=self.device)
        missing_keys, unexpected_keys = self.t2m_transformer.load_state_dict(checkpoint['t2m_transformer'], strict=False)
        assert len(unexpected_keys) == 0
        assert all([k.startswith('clip_model.') for k in missing_keys])

        try:
            self.opt_t2m_transformer.load_state_dict(checkpoint['opt_t2m_transformer']) # Optimizer

            self.scheduler.load_state_dict(checkpoint['scheduler']) # Scheduler
        except:
            print('Resume wo optimizer')
        return checkpoint['ep'], checkpoint['total_it']

    def train(self, train_loader, val_loader, eval_val_loader, eval_wrapper, plot_eval):
        self.t2m_transformer.to(self.device)
        self.vq_model.to(self.device)

        self.opt_t2m_transformer = optim.AdamW(self.t2m_transformer.parameters(), betas=(0.9, 0.99), lr=self.opt.lr, weight_decay=1e-5)
        self.scheduler = optim.lr_scheduler.MultiStepLR(self.opt_t2m_transformer,
                                                        milestones=self.opt.milestones,
                                                        gamma=self.opt.gamma)

        epoch = 0
        it = 0

        if self.opt.is_continue:
            model_dir = pjoin(self.opt.model_dir, 'latest.tar')  # TODO
            epoch, it = self.resume(model_dir)
            print("Load model epoch:%d iterations:%d"%(epoch, it))

        start_time = time.time()
        total_iters = self.opt.max_epoch * len(train_loader)
        print(f'Total Epochs: {self.opt.max_epoch}, Total Iters: {total_iters}')
        print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_loader), len(val_loader)))
        logs = defaultdict(def_value, OrderedDict())

        best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_mask_transformer(
            self.opt.save_root, eval_val_loader, self.t2m_transformer, self.vq_model, self.logger, epoch,
            best_fid=100, best_div=100,
            best_top1=0, best_top2=0, best_top3=0,
            best_matching=100, eval_wrapper=eval_wrapper,
            plot_func=plot_eval, save_ckpt=False, save_anim=False
        )
        best_acc = 0.

        while epoch < self.opt.max_epoch:
            self.t2m_transformer.train()
            self.vq_model.eval()

            for i, batch in enumerate(train_loader):
                it += 1
                if it < self.opt.warm_up_iter:
                    self.update_lr_warm_up(it, self.opt.warm_up_iter, self.opt.lr)

                loss, acc = self.update(batch_data=batch)
                logs['loss'] += loss
                logs['acc'] += acc
                logs['lr'] += self.opt_t2m_transformer.param_groups[0]['lr']

                if it % self.opt.log_every == 0:
                    mean_loss = OrderedDict()
                    # self.logger.add_scalar('val_loss', val_loss, it)
                    # self.l
                    for tag, value in logs.items():
                        self.logger.add_scalar('Train/%s'%tag, value / self.opt.log_every, it)
                        mean_loss[tag] = value / self.opt.log_every
                    logs = defaultdict(def_value, OrderedDict())
                    print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)

                if it % self.opt.save_latest == 0:
                    self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)

            self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
            epoch += 1

            print('Validation time:')
            self.vq_model.eval()
            self.t2m_transformer.eval()

            val_loss = []
            val_acc = []
            with torch.no_grad():
                for i, batch_data in enumerate(val_loader):
                    loss, acc = self.forward(batch_data)
                    val_loss.append(loss.item())
                    val_acc.append(acc)

            print(f"Validation loss:{np.mean(val_loss):.3f}, accuracy:{np.mean(val_acc):.3f}")

            self.logger.add_scalar('Val/loss', np.mean(val_loss), epoch)
            self.logger.add_scalar('Val/acc', np.mean(val_acc), epoch)

            if np.mean(val_acc) > best_acc:
                print(f"Improved accuracy from {best_acc:.02f} to {np.mean(val_acc)}!!!")
                self.save(pjoin(self.opt.model_dir, 'net_best_acc.tar'), epoch, it)
                best_acc = np.mean(val_acc)

            best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_mask_transformer(
                self.opt.save_root, eval_val_loader, self.t2m_transformer, self.vq_model, self.logger, epoch, best_fid=best_fid,
                best_div=best_div, best_top1=best_top1, best_top2=best_top2, best_top3=best_top3,
                best_matching=best_matching, eval_wrapper=eval_wrapper,
                plot_func=plot_eval, save_ckpt=True, save_anim=(epoch%self.opt.eval_every_e==0)
            )


class ResidualTransformerTrainer:
    def __init__(self, args, res_transformer, vq_model):
        self.opt = args
        self.res_transformer = res_transformer
        self.vq_model = vq_model
        self.device = args.device
        self.vq_model.eval()

        if args.is_train:
            self.logger = SummaryWriter(args.log_dir)
            # self.l1_criterion = torch.nn.SmoothL1Loss()


    def update_lr_warm_up(self, nb_iter, warm_up_iter, lr):

        current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
        for param_group in self.opt_res_transformer.param_groups:
            param_group["lr"] = current_lr

        return current_lr


    def forward(self, batch_data):

        conds, motion, m_lens = batch_data
        motion = motion.detach().float().to(self.device)
        m_lens = m_lens.detach().long().to(self.device)

        # (b, n, q), (q, b, n ,d)
        code_idx, all_codes = self.vq_model.encode(motion)
        m_lens = m_lens // 4

        conds = conds.to(self.device).float() if torch.is_tensor(conds) else conds

        ce_loss, pred_ids, acc = self.res_transformer(code_idx, conds, m_lens)

        return ce_loss, acc

    def update(self, batch_data):
        loss, acc = self.forward(batch_data)

        self.opt_res_transformer.zero_grad()
        loss.backward()
        self.opt_res_transformer.step()
        self.scheduler.step()

        return loss.item(), acc

    def save(self, file_name, ep, total_it):
        res_trans_state_dict = self.res_transformer.state_dict()
        clip_weights = [e for e in res_trans_state_dict.keys() if e.startswith('clip_model.')]
        for e in clip_weights:
            del res_trans_state_dict[e]
        state = {
            'res_transformer': res_trans_state_dict,
            'opt_res_transformer': self.opt_res_transformer.state_dict(),
            'scheduler':self.scheduler.state_dict(),
            'ep': ep,
            'total_it': total_it,
        }
        torch.save(state, file_name)

    def resume(self, model_dir):
        checkpoint = torch.load(model_dir, map_location=self.device)
        missing_keys, unexpected_keys = self.res_transformer.load_state_dict(checkpoint['res_transformer'], strict=False)
        assert len(unexpected_keys) == 0
        assert all([k.startswith('clip_model.') for k in missing_keys])

        try:
            self.opt_res_transformer.load_state_dict(checkpoint['opt_res_transformer']) # Optimizer

            self.scheduler.load_state_dict(checkpoint['scheduler']) # Scheduler
        except:
            print('Resume wo optimizer')
        return checkpoint['ep'], checkpoint['total_it']

    def train(self, train_loader, val_loader, eval_val_loader, eval_wrapper, plot_eval):
        self.res_transformer.to(self.device)
        self.vq_model.to(self.device)

        self.opt_res_transformer = optim.AdamW(self.res_transformer.parameters(), betas=(0.9, 0.99), lr=self.opt.lr, weight_decay=1e-5)
        self.scheduler = optim.lr_scheduler.MultiStepLR(self.opt_res_transformer,
                                                        milestones=self.opt.milestones,
                                                        gamma=self.opt.gamma)

        epoch = 0
        it = 0

        if self.opt.is_continue:
            model_dir = pjoin(self.opt.model_dir, 'latest.tar')  # TODO
            epoch, it = self.resume(model_dir)
            print("Load model epoch:%d iterations:%d"%(epoch, it))

        start_time = time.time()
        total_iters = self.opt.max_epoch * len(train_loader)
        print(f'Total Epochs: {self.opt.max_epoch}, Total Iters: {total_iters}')
        print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_loader), len(val_loader)))
        logs = defaultdict(def_value, OrderedDict())

        best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_res_transformer(
            self.opt.save_root, eval_val_loader, self.res_transformer, self.vq_model, self.logger, epoch,
            best_fid=100, best_div=100,
            best_top1=0, best_top2=0, best_top3=0,
            best_matching=100, eval_wrapper=eval_wrapper,
            plot_func=plot_eval, save_ckpt=False, save_anim=False
        )
        best_loss = 100
        best_acc = 0

        while epoch < self.opt.max_epoch:
            self.res_transformer.train()
            self.vq_model.eval()

            for i, batch in enumerate(train_loader):
                it += 1
                if it < self.opt.warm_up_iter:
                    self.update_lr_warm_up(it, self.opt.warm_up_iter, self.opt.lr)

                loss, acc = self.update(batch_data=batch)
                logs['loss'] += loss
                logs["acc"] += acc
                logs['lr'] += self.opt_res_transformer.param_groups[0]['lr']

                if it % self.opt.log_every == 0:
                    mean_loss = OrderedDict()
                    # self.logger.add_scalar('val_loss', val_loss, it)
                    # self.l
                    for tag, value in logs.items():
                        self.logger.add_scalar('Train/%s'%tag, value / self.opt.log_every, it)
                        mean_loss[tag] = value / self.opt.log_every
                    logs = defaultdict(def_value, OrderedDict())
                    print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)

                if it % self.opt.save_latest == 0:
                    self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)

            epoch += 1
            self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)

            print('Validation time:')
            self.vq_model.eval()
            self.res_transformer.eval()

            val_loss = []
            val_acc = []
            with torch.no_grad():
                for i, batch_data in enumerate(val_loader):
                    loss, acc = self.forward(batch_data)
                    val_loss.append(loss.item())
                    val_acc.append(acc)

            print(f"Validation loss:{np.mean(val_loss):.3f}, Accuracy:{np.mean(val_acc):.3f}")

            self.logger.add_scalar('Val/loss', np.mean(val_loss), epoch)
            self.logger.add_scalar('Val/acc', np.mean(val_acc), epoch)

            if np.mean(val_loss) < best_loss:
                print(f"Improved loss from {best_loss:.02f} to {np.mean(val_loss)}!!!")
                self.save(pjoin(self.opt.model_dir, 'net_best_loss.tar'), epoch, it)
                best_loss = np.mean(val_loss)

            if np.mean(val_acc) > best_acc:
                print(f"Improved acc from {best_acc:.02f} to {np.mean(val_acc)}!!!")
                # self.save(pjoin(self.opt.model_dir, 'net_best_loss.tar'), epoch, it)
                best_acc = np.mean(val_acc)

            best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_res_transformer(
                self.opt.save_root, eval_val_loader, self.res_transformer, self.vq_model, self.logger, epoch, best_fid=best_fid,
                best_div=best_div, best_top1=best_top1, best_top2=best_top2, best_top3=best_top3,
                best_matching=best_matching, eval_wrapper=eval_wrapper,
                plot_func=plot_eval, save_ckpt=True, save_anim=(epoch%self.opt.eval_every_e==0)
            )