Spaces:
Running
Running
File size: 15,378 Bytes
c0eac48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import torch
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm_
from torch.utils.tensorboard import SummaryWriter
from os.path import join as pjoin
import torch.nn.functional as F
import torch.optim as optim
import time
import numpy as np
from collections import OrderedDict, defaultdict
from utils.eval_t2m import evaluation_vqvae, evaluation_res_conv
from utils.utils import print_current_loss
import os
import sys
def def_value():
return 0.0
class RVQTokenizerTrainer:
def __init__(self, args, vq_model):
self.opt = args
self.vq_model = vq_model
self.device = args.device
if args.is_train:
self.logger = SummaryWriter(args.log_dir)
if args.recons_loss == 'l1':
self.l1_criterion = torch.nn.L1Loss()
elif args.recons_loss == 'l1_smooth':
self.l1_criterion = torch.nn.SmoothL1Loss()
# self.critic = CriticWrapper(self.opt.dataset_name, self.opt.device)
def forward(self, batch_data):
motions = batch_data.detach().to(self.device).float()
pred_motion, loss_commit, perplexity = self.vq_model(motions)
self.motions = motions
self.pred_motion = pred_motion
loss_rec = self.l1_criterion(pred_motion, motions)
pred_local_pos = pred_motion[..., 4 : (self.opt.joints_num - 1) * 3 + 4]
local_pos = motions[..., 4 : (self.opt.joints_num - 1) * 3 + 4]
loss_explicit = self.l1_criterion(pred_local_pos, local_pos)
loss = loss_rec + self.opt.loss_vel * loss_explicit + self.opt.commit * loss_commit
# return loss, loss_rec, loss_vel, loss_commit, perplexity
# return loss, loss_rec, loss_percept, loss_commit, perplexity
return loss, loss_rec, loss_explicit, loss_commit, perplexity
# @staticmethod
def update_lr_warm_up(self, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in self.opt_vq_model.param_groups:
param_group["lr"] = current_lr
return current_lr
def save(self, file_name, ep, total_it):
state = {
"vq_model": self.vq_model.state_dict(),
"opt_vq_model": self.opt_vq_model.state_dict(),
"scheduler": self.scheduler.state_dict(),
'ep': ep,
'total_it': total_it,
}
torch.save(state, file_name)
def resume(self, model_dir):
checkpoint = torch.load(model_dir, map_location=self.device)
self.vq_model.load_state_dict(checkpoint['vq_model'])
self.opt_vq_model.load_state_dict(checkpoint['opt_vq_model'])
self.scheduler.load_state_dict(checkpoint['scheduler'])
return checkpoint['ep'], checkpoint['total_it']
def train(self, train_loader, val_loader, eval_val_loader, eval_wrapper, plot_eval=None):
self.vq_model.to(self.device)
self.opt_vq_model = optim.AdamW(self.vq_model.parameters(), lr=self.opt.lr, betas=(0.9, 0.99), weight_decay=self.opt.weight_decay)
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.opt_vq_model, milestones=self.opt.milestones, gamma=self.opt.gamma)
epoch = 0
it = 0
if self.opt.is_continue:
model_dir = pjoin(self.opt.model_dir, 'latest.tar')
epoch, it = self.resume(model_dir)
print("Load model epoch:%d iterations:%d"%(epoch, it))
start_time = time.time()
total_iters = self.opt.max_epoch * len(train_loader)
print(f'Total Epochs: {self.opt.max_epoch}, Total Iters: {total_iters}')
print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_loader), len(eval_val_loader)))
# val_loss = 0
# min_val_loss = np.inf
# min_val_epoch = epoch
current_lr = self.opt.lr
logs = defaultdict(def_value, OrderedDict())
# sys.exit()
best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_vqvae(
self.opt.model_dir, eval_val_loader, self.vq_model, self.logger, epoch, best_fid=1000,
best_div=100, best_top1=0,
best_top2=0, best_top3=0, best_matching=100,
eval_wrapper=eval_wrapper, save=False)
while epoch < self.opt.max_epoch:
self.vq_model.train()
for i, batch_data in enumerate(train_loader):
it += 1
if it < self.opt.warm_up_iter:
current_lr = self.update_lr_warm_up(it, self.opt.warm_up_iter, self.opt.lr)
loss, loss_rec, loss_vel, loss_commit, perplexity = self.forward(batch_data)
self.opt_vq_model.zero_grad()
loss.backward()
self.opt_vq_model.step()
if it >= self.opt.warm_up_iter:
self.scheduler.step()
logs['loss'] += loss.item()
logs['loss_rec'] += loss_rec.item()
# Note it not necessarily velocity, too lazy to change the name now
logs['loss_vel'] += loss_vel.item()
logs['loss_commit'] += loss_commit.item()
logs['perplexity'] += perplexity.item()
logs['lr'] += self.opt_vq_model.param_groups[0]['lr']
if it % self.opt.log_every == 0:
mean_loss = OrderedDict()
# self.logger.add_scalar('val_loss', val_loss, it)
# self.l
for tag, value in logs.items():
self.logger.add_scalar('Train/%s'%tag, value / self.opt.log_every, it)
mean_loss[tag] = value / self.opt.log_every
logs = defaultdict(def_value, OrderedDict())
print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)
if it % self.opt.save_latest == 0:
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
epoch += 1
# if epoch % self.opt.save_every_e == 0:
# self.save(pjoin(self.opt.model_dir, 'E%04d.tar' % (epoch)), epoch, total_it=it)
print('Validation time:')
self.vq_model.eval()
val_loss_rec = []
val_loss_vel = []
val_loss_commit = []
val_loss = []
val_perpexity = []
with torch.no_grad():
for i, batch_data in enumerate(val_loader):
loss, loss_rec, loss_vel, loss_commit, perplexity = self.forward(batch_data)
# val_loss_rec += self.l1_criterion(self.recon_motions, self.motions).item()
# val_loss_emb += self.embedding_loss.item()
val_loss.append(loss.item())
val_loss_rec.append(loss_rec.item())
val_loss_vel.append(loss_vel.item())
val_loss_commit.append(loss_commit.item())
val_perpexity.append(perplexity.item())
# val_loss = val_loss_rec / (len(val_dataloader) + 1)
# val_loss = val_loss / (len(val_dataloader) + 1)
# val_loss_rec = val_loss_rec / (len(val_dataloader) + 1)
# val_loss_emb = val_loss_emb / (len(val_dataloader) + 1)
self.logger.add_scalar('Val/loss', sum(val_loss) / len(val_loss), epoch)
self.logger.add_scalar('Val/loss_rec', sum(val_loss_rec) / len(val_loss_rec), epoch)
self.logger.add_scalar('Val/loss_vel', sum(val_loss_vel) / len(val_loss_vel), epoch)
self.logger.add_scalar('Val/loss_commit', sum(val_loss_commit) / len(val_loss), epoch)
self.logger.add_scalar('Val/loss_perplexity', sum(val_perpexity) / len(val_loss_rec), epoch)
print('Validation Loss: %.5f Reconstruction: %.5f, Velocity: %.5f, Commit: %.5f' %
(sum(val_loss)/len(val_loss), sum(val_loss_rec)/len(val_loss),
sum(val_loss_vel)/len(val_loss), sum(val_loss_commit)/len(val_loss)))
# if sum(val_loss) / len(val_loss) < min_val_loss:
# min_val_loss = sum(val_loss) / len(val_loss)
# # if sum(val_loss_vel) / len(val_loss_vel) < min_val_loss:
# # min_val_loss = sum(val_loss_vel) / len(val_loss_vel)
# min_val_epoch = epoch
# self.save(pjoin(self.opt.model_dir, 'finest.tar'), epoch, it)
# print('Best Validation Model So Far!~')
best_fid, best_div, best_top1, best_top2, best_top3, best_matching, writer = evaluation_vqvae(
self.opt.model_dir, eval_val_loader, self.vq_model, self.logger, epoch, best_fid=best_fid,
best_div=best_div, best_top1=best_top1,
best_top2=best_top2, best_top3=best_top3, best_matching=best_matching, eval_wrapper=eval_wrapper)
if epoch % self.opt.eval_every_e == 0:
data = torch.cat([self.motions[:4], self.pred_motion[:4]], dim=0).detach().cpu().numpy()
# np.save(pjoin(self.opt.eval_dir, 'E%04d.npy' % (epoch)), data)
save_dir = pjoin(self.opt.eval_dir, 'E%04d' % (epoch))
os.makedirs(save_dir, exist_ok=True)
plot_eval(data, save_dir)
# if plot_eval is not None:
# save_dir = pjoin(self.opt.eval_dir, 'E%04d' % (epoch))
# os.makedirs(save_dir, exist_ok=True)
# plot_eval(data, save_dir)
# if epoch - min_val_epoch >= self.opt.early_stop_e:
# print('Early Stopping!~')
class LengthEstTrainer(object):
def __init__(self, args, estimator, text_encoder, encode_fnc):
self.opt = args
self.estimator = estimator
self.text_encoder = text_encoder
self.encode_fnc = encode_fnc
self.device = args.device
if args.is_train:
# self.motion_dis
self.logger = SummaryWriter(args.log_dir)
self.mul_cls_criterion = torch.nn.CrossEntropyLoss()
def resume(self, model_dir):
checkpoints = torch.load(model_dir, map_location=self.device)
self.estimator.load_state_dict(checkpoints['estimator'])
# self.opt_estimator.load_state_dict(checkpoints['opt_estimator'])
return checkpoints['epoch'], checkpoints['iter']
def save(self, model_dir, epoch, niter):
state = {
'estimator': self.estimator.state_dict(),
# 'opt_estimator': self.opt_estimator.state_dict(),
'epoch': epoch,
'niter': niter,
}
torch.save(state, model_dir)
@staticmethod
def zero_grad(opt_list):
for opt in opt_list:
opt.zero_grad()
@staticmethod
def clip_norm(network_list):
for network in network_list:
clip_grad_norm_(network.parameters(), 0.5)
@staticmethod
def step(opt_list):
for opt in opt_list:
opt.step()
def train(self, train_dataloader, val_dataloader):
self.estimator.to(self.device)
self.text_encoder.to(self.device)
self.opt_estimator = optim.Adam(self.estimator.parameters(), lr=self.opt.lr)
epoch = 0
it = 0
if self.opt.is_continue:
model_dir = pjoin(self.opt.model_dir, 'latest.tar')
epoch, it = self.resume(model_dir)
start_time = time.time()
total_iters = self.opt.max_epoch * len(train_dataloader)
print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_dataloader), len(val_dataloader)))
val_loss = 0
min_val_loss = np.inf
logs = defaultdict(float)
while epoch < self.opt.max_epoch:
# time0 = time.time()
for i, batch_data in enumerate(train_dataloader):
self.estimator.train()
conds, _, m_lens = batch_data
# word_emb = word_emb.detach().to(self.device).float()
# pos_ohot = pos_ohot.detach().to(self.device).float()
# m_lens = m_lens.to(self.device).long()
text_embs = self.encode_fnc(self.text_encoder, conds, self.opt.device).detach()
# print(text_embs.shape, text_embs.device)
pred_dis = self.estimator(text_embs)
self.zero_grad([self.opt_estimator])
gt_labels = m_lens // self.opt.unit_length
gt_labels = gt_labels.long().to(self.device)
# print(gt_labels.shape, pred_dis.shape)
# print(gt_labels.max(), gt_labels.min())
# print(pred_dis)
acc = (gt_labels == pred_dis.argmax(dim=-1)).sum() / len(gt_labels)
loss = self.mul_cls_criterion(pred_dis, gt_labels)
loss.backward()
self.clip_norm([self.estimator])
self.step([self.opt_estimator])
logs['loss'] += loss.item()
logs['acc'] += acc.item()
it += 1
if it % self.opt.log_every == 0:
mean_loss = OrderedDict({'val_loss': val_loss})
# self.logger.add_scalar('Val/loss', val_loss, it)
for tag, value in logs.items():
self.logger.add_scalar("Train/%s"%tag, value / self.opt.log_every, it)
mean_loss[tag] = value / self.opt.log_every
logs = defaultdict(float)
print_current_loss(start_time, it, total_iters, mean_loss, epoch=epoch, inner_iter=i)
if it % self.opt.save_latest == 0:
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
epoch += 1
print('Validation time:')
val_loss = 0
val_acc = 0
# self.estimator.eval()
with torch.no_grad():
for i, batch_data in enumerate(val_dataloader):
self.estimator.eval()
conds, _, m_lens = batch_data
# word_emb = word_emb.detach().to(self.device).float()
# pos_ohot = pos_ohot.detach().to(self.device).float()
# m_lens = m_lens.to(self.device).long()
text_embs = self.encode_fnc(self.text_encoder, conds, self.opt.device)
pred_dis = self.estimator(text_embs)
gt_labels = m_lens // self.opt.unit_length
gt_labels = gt_labels.long().to(self.device)
loss = self.mul_cls_criterion(pred_dis, gt_labels)
acc = (gt_labels == pred_dis.argmax(dim=-1)).sum() / len(gt_labels)
val_loss += loss.item()
val_acc += acc.item()
val_loss = val_loss / len(val_dataloader)
val_acc = val_acc / len(val_dataloader)
print('Validation Loss: %.5f Validation Acc: %.5f' % (val_loss, val_acc))
if val_loss < min_val_loss:
self.save(pjoin(self.opt.model_dir, 'finest.tar'), epoch, it)
min_val_loss = val_loss
|