File size: 7,752 Bytes
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
from os.path import join as pjoin

import torch
import torch.nn.functional as F

from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
from models.vq.model import RVQVAE, LengthEstimator

from options.eval_option import EvalT2MOptions
from utils.get_opt import get_opt

from utils.fixseed import fixseed
from visualization.joints2bvh import Joint2BVHConvertor

from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion

from utils.paramUtil import t2m_kinematic_chain

import numpy as np

from gen_t2m import load_vq_model, load_res_model, load_trans_model

if __name__ == '__main__':
    parser = EvalT2MOptions()
    opt = parser.parse()
    fixseed(opt.seed)

    opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
    torch.autograd.set_detect_anomaly(True)

    dim_pose = 251 if opt.dataset_name == 'kit' else 263

    root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
    model_dir = pjoin(root_dir, 'model')
    result_dir = pjoin('./editing', opt.ext)
    joints_dir = pjoin(result_dir, 'joints')
    animation_dir = pjoin(result_dir, 'animations')
    os.makedirs(joints_dir, exist_ok=True)
    os.makedirs(animation_dir,exist_ok=True)

    model_opt_path = pjoin(root_dir, 'opt.txt')
    model_opt = get_opt(model_opt_path, device=opt.device)

    #######################
    ######Loading RVQ######
    #######################
    vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt')
    vq_opt = get_opt(vq_opt_path, device=opt.device)
    vq_opt.dim_pose = dim_pose
    vq_model, vq_opt = load_vq_model(vq_opt)

    model_opt.num_tokens = vq_opt.nb_code
    model_opt.num_quantizers = vq_opt.num_quantizers
    model_opt.code_dim = vq_opt.code_dim

    #################################
    ######Loading R-Transformer######
    #################################
    res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt')
    res_opt = get_opt(res_opt_path, device=opt.device)
    res_model = load_res_model(res_opt, vq_opt, opt)

    assert res_opt.vq_name == model_opt.vq_name

    #################################
    ######Loading M-Transformer######
    #################################
    t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')

    t2m_transformer.eval()
    vq_model.eval()
    res_model.eval()

    res_model.to(opt.device)
    t2m_transformer.to(opt.device)
    vq_model.to(opt.device)

    ##### ---- Data ---- #####
    max_motion_length = 196
    mean = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
    std = np.load(pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
    def inv_transform(data):
        return data * std + mean
    ### We provided an example source motion (from 'new_joint_vecs') for editing. See './example_data/000612.mp4'###
    motion = np.load(opt.source_motion)
    m_length = len(motion)
    motion = (motion - mean) / std
    if max_motion_length > m_length:
        motion = np.concatenate([motion, np.zeros((max_motion_length - m_length, motion.shape[1])) ], axis=0)
    motion = torch.from_numpy(motion)[None].to(opt.device)

    prompt_list = []
    length_list = []
    if opt.motion_length == 0:
        opt.motion_length = m_length
        print("Using default motion length.")
    
    prompt_list.append(opt.text_prompt)
    length_list.append(opt.motion_length)
    if opt.text_prompt == "":
        raise "Using an empty text prompt."

    token_lens = torch.LongTensor(length_list) // 4
    token_lens = token_lens.to(opt.device).long()

    m_length = token_lens * 4
    captions = prompt_list
    print_captions = captions[0]

    _edit_slice = opt.mask_edit_section
    edit_slice = []
    for eds in _edit_slice:
        _start, _end = eds.split(',')
        _start = eval(_start)
        _end = eval(_end)
        edit_slice.append([_start, _end])

    sample = 0
    kinematic_chain = t2m_kinematic_chain
    converter = Joint2BVHConvertor()

    with torch.no_grad():
        tokens, features = vq_model.encode(motion)
    ### build editing mask, TOEDIT marked as 1 ###
    edit_mask = torch.zeros_like(tokens[..., 0])
    seq_len = tokens.shape[1]
    for _start, _end in edit_slice:
        if isinstance(_start, float):
            _start = int(_start*seq_len)
            _end = int(_end*seq_len)
        else:
            _start //= 4
            _end //= 4
        edit_mask[:, _start: _end] = 1
        print_captions = f'{print_captions} [{_start*4/20.}s - {_end*4/20.}s]'
    edit_mask = edit_mask.bool()
    for r in range(opt.repeat_times):
        print("-->Repeat %d"%r)
        with torch.no_grad():
            mids = t2m_transformer.edit(
                                        captions, tokens[..., 0].clone(), m_length//4,
                                        timesteps=opt.time_steps,
                                        cond_scale=opt.cond_scale,
                                        temperature=opt.temperature,
                                        topk_filter_thres=opt.topkr,
                                        gsample=opt.gumbel_sample,
                                        force_mask=opt.force_mask,
                                        edit_mask=edit_mask.clone(),
                                        )
            if opt.use_res_model:
                mids = res_model.generate(mids, captions, m_length//4, temperature=1, cond_scale=2)
            else:
                mids.unsqueeze_(-1)

            pred_motions = vq_model.forward_decoder(mids)

            pred_motions = pred_motions.detach().cpu().numpy()

            source_motions = motion.detach().cpu().numpy()

            data = inv_transform(pred_motions)
            source_data = inv_transform(source_motions)

        for k, (caption, joint_data, source_data)  in enumerate(zip(captions, data, source_data)):
            print("---->Sample %d: %s %d"%(k, caption, m_length[k]))
            animation_path = pjoin(animation_dir, str(k))
            joint_path = pjoin(joints_dir, str(k))

            os.makedirs(animation_path, exist_ok=True)
            os.makedirs(joint_path, exist_ok=True)

            joint_data = joint_data[:m_length[k]]
            joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()

            source_data = source_data[:m_length[k]]
            soucre_joint = recover_from_ric(torch.from_numpy(source_data).float(), 22).numpy()

            bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.bvh"%(k, r, m_length[k]))
            _, ik_joint = converter.convert(joint, filename=bvh_path, iterations=100)

            bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d.bvh" % (k, r, m_length[k]))
            _, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)


            save_path = pjoin(animation_path, "sample%d_repeat%d_len%d.mp4"%(k, r, m_length[k]))
            ik_save_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.mp4"%(k, r, m_length[k]))
            source_save_path = pjoin(animation_path, "sample%d_source_len%d.mp4"%(k, m_length[k]))

            plot_3d_motion(ik_save_path, kinematic_chain, ik_joint, title=print_captions, fps=20)
            plot_3d_motion(save_path, kinematic_chain, joint, title=print_captions, fps=20)
            plot_3d_motion(source_save_path, kinematic_chain, soucre_joint, title='None', fps=20)
            np.save(pjoin(joint_path, "sample%d_repeat%d_len%d.npy"%(k, r, m_length[k])), joint)
            np.save(pjoin(joint_path, "sample%d_repeat%d_len%d_ik.npy"%(k, r, m_length[k])), ik_joint)