File size: 9,574 Bytes
c0eac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import numpy as np
# import scipy.sparse as sparse
import visualization.Animation as Animation


""" Family Functions """


def joints(parents):
    """
    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    joints : (J) ndarray
        Array of joint indices
    """
    return np.arange(len(parents), dtype=int)


def joints_list(parents):
    """
    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    joints : [ndarray]
        List of arrays of joint idices for
        each joint
    """
    return list(joints(parents)[:, np.newaxis])


def parents_list(parents):
    """
    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    parents : [ndarray]
        List of arrays of joint idices for
        the parents of each joint
    """
    return list(parents[:, np.newaxis])


def children_list(parents):
    """
    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    children : [ndarray]
        List of arrays of joint indices for
        the children of each joint
    """

    def joint_children(i):
        return [j for j, p in enumerate(parents) if p == i]

    return list(map(lambda j: np.array(joint_children(j)), joints(parents)))


def descendants_list(parents):
    """
    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    descendants : [ndarray]
        List of arrays of joint idices for
        the descendants of each joint
    """

    children = children_list(parents)

    def joint_descendants(i):
        return sum([joint_descendants(j) for j in children[i]], list(children[i]))

    return list(map(lambda j: np.array(joint_descendants(j)), joints(parents)))


def ancestors_list(parents):
    """
    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    ancestors : [ndarray]
        List of arrays of joint idices for
        the ancestors of each joint
    """

    decendants = descendants_list(parents)

    def joint_ancestors(i):
        return [j for j in joints(parents) if i in decendants[j]]

    return list(map(lambda j: np.array(joint_ancestors(j)), joints(parents)))


""" Mask Functions """


def mask(parents, filter):
    """
    Constructs a Mask for a give filter

    A mask is a (J, J) ndarray truth table for a given
    condition over J joints. For example there
    may be a mask specifying if a joint N is a
    child of another joint M.

    This could be constructed into a mask using
    `m = mask(parents, children_list)` and the condition
    of childhood tested using `m[N, M]`.

    Parameters
    ----------

    parents : (J) ndarray
        parents array

    filter : (J) ndarray -> [ndarray]
        function that outputs a list of arrays
        of joint indices for some condition

    Returns
    -------

    mask : (N, N) ndarray
        boolean truth table of given condition
    """
    m = np.zeros((len(parents), len(parents))).astype(bool)
    jnts = joints(parents)
    fltr = filter(parents)
    for i, f in enumerate(fltr): m[i, :] = np.any(jnts[:, np.newaxis] == f[np.newaxis, :], axis=1)
    return m


def joints_mask(parents): return np.eye(len(parents)).astype(bool)


def children_mask(parents): return mask(parents, children_list)


def parents_mask(parents): return mask(parents, parents_list)


def descendants_mask(parents): return mask(parents, descendants_list)


def ancestors_mask(parents): return mask(parents, ancestors_list)


""" Search Functions """


def joint_chain_ascend(parents, start, end):
    chain = []
    while start != end:
        chain.append(start)
        start = parents[start]
    chain.append(end)
    return np.array(chain, dtype=int)


""" Constraints """


def constraints(anim, **kwargs):
    """
    Constraint list for Animation

    This constraint list can be used in the
    VerletParticle solver to constrain
    a animation global joint positions.

    Parameters
    ----------

    anim : Animation
        Input animation

    masses : (F, J) ndarray
        Optional list of masses
        for joints J across frames F
        defaults to weighting by
        vertical height

    Returns
    -------

    constraints : [(int, int, (F, J) ndarray, (F, J) ndarray, (F, J) ndarray)]
        A list of constraints in the format:
        (Joint1, Joint2, Masses1, Masses2, Lengths)

    """

    masses = kwargs.pop('masses', None)

    children = children_list(anim.parents)
    constraints = []

    points_offsets = Animation.offsets_global(anim)
    points = Animation.positions_global(anim)

    if masses is None:
        masses = 1.0 / (0.1 + np.absolute(points_offsets[:, 1]))
        masses = masses[np.newaxis].repeat(len(anim), axis=0)

    for j in range(anim.shape[1]):

        """ Add constraints between all joints and their children """
        for c0 in children[j]:

            dists = np.sum((points[:, c0] - points[:, j]) ** 2.0, axis=1) ** 0.5
            constraints.append((c0, j, masses[:, c0], masses[:, j], dists))

            """ Add constraints between all children of joint """
            for c1 in children[j]:
                if c0 == c1: continue

                dists = np.sum((points[:, c0] - points[:, c1]) ** 2.0, axis=1) ** 0.5
                constraints.append((c0, c1, masses[:, c0], masses[:, c1], dists))

    return constraints


""" Graph Functions """


def graph(anim):
    """
    Generates a weighted adjacency matrix
    using local joint distances along
    the skeletal structure.

    Joints which are not connected
    are assigned the weight `0`.

    Joints which actually have zero distance
    between them, but are still connected, are
    perturbed by some minimal amount.

    The output of this routine can be used
    with the `scipy.sparse.csgraph`
    routines for graph analysis.

    Parameters
    ----------

    anim : Animation
        input animation

    Returns
    -------

    graph : (N, N) ndarray
        weight adjacency matrix using
        local distances along the
        skeletal structure from joint
        N to joint M. If joints are not
        directly connected are assigned
        the weight `0`.
    """

    graph = np.zeros(anim.shape[1], anim.shape[1])
    lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5 + 0.001

    for i, p in enumerate(anim.parents):
        if p == -1: continue
        graph[i, p] = lengths[p]
        graph[p, i] = lengths[p]

    return graph


def distances(anim):
    """
    Generates a distance matrix for
    pairwise joint distances along
    the skeletal structure

    Parameters
    ----------

    anim : Animation
        input animation

    Returns
    -------

    distances : (N, N) ndarray
        array of pairwise distances
        along skeletal structure
        from some joint N to some
        joint M
    """

    distances = np.zeros((anim.shape[1], anim.shape[1]))
    generated = distances.copy().astype(bool)

    joint_lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5
    joint_children = children_list(anim)
    joint_parents = parents_list(anim)

    def find_distance(distances, generated, prev, i, j):

        """ If root, identity, or already generated, return """
        if j == -1: return (0.0, True)
        if j == i: return (0.0, True)
        if generated[i, j]: return (distances[i, j], True)

        """ Find best distances along parents and children """
        par_dists = [(joint_lengths[j], find_distance(distances, generated, j, i, p)) for p in joint_parents[j] if
                     p != prev]
        out_dists = [(joint_lengths[c], find_distance(distances, generated, j, i, c)) for c in joint_children[j] if
                     c != prev]

        """ Check valid distance and not dead end """
        par_dists = [a + d for (a, (d, f)) in par_dists if f]
        out_dists = [a + d for (a, (d, f)) in out_dists if f]

        """ All dead ends """
        if (out_dists + par_dists) == []: return (0.0, False)

        """ Get minimum path """
        dist = min(out_dists + par_dists)
        distances[i, j] = dist;
        distances[j, i] = dist
        generated[i, j] = True;
        generated[j, i] = True

    for i in range(anim.shape[1]):
        for j in range(anim.shape[1]):
            find_distance(distances, generated, -1, i, j)

    return distances


def edges(parents):
    """
    Animation structure edges

    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    edges : (M, 2) ndarray
        array of pairs where each
        pair contains two indices of a joints
        which corrisponds to an edge in the
        joint structure going from parent to child.
    """

    return np.array(list(zip(parents, joints(parents)))[1:])


def incidence(parents):
    """
    Incidence Matrix

    Parameters
    ----------

    parents : (J) ndarray
        parents array

    Returns
    -------

    incidence : (N, M) ndarray

        Matrix of N joint positions by
        M edges which each entry is either
        1 or -1 and multiplication by the
        joint positions returns the an
        array of vectors along each edge
        of the structure
    """

    es = edges(parents)

    inc = np.zeros((len(parents) - 1, len(parents))).astype(np.int)
    for i, e in enumerate(es):
        inc[i, e[0]] = 1
        inc[i, e[1]] = -1

    return inc.T