Spaces:
Running
Running
File size: 9,574 Bytes
c0eac48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import numpy as np
# import scipy.sparse as sparse
import visualization.Animation as Animation
""" Family Functions """
def joints(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
joints : (J) ndarray
Array of joint indices
"""
return np.arange(len(parents), dtype=int)
def joints_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
joints : [ndarray]
List of arrays of joint idices for
each joint
"""
return list(joints(parents)[:, np.newaxis])
def parents_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
parents : [ndarray]
List of arrays of joint idices for
the parents of each joint
"""
return list(parents[:, np.newaxis])
def children_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
children : [ndarray]
List of arrays of joint indices for
the children of each joint
"""
def joint_children(i):
return [j for j, p in enumerate(parents) if p == i]
return list(map(lambda j: np.array(joint_children(j)), joints(parents)))
def descendants_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
descendants : [ndarray]
List of arrays of joint idices for
the descendants of each joint
"""
children = children_list(parents)
def joint_descendants(i):
return sum([joint_descendants(j) for j in children[i]], list(children[i]))
return list(map(lambda j: np.array(joint_descendants(j)), joints(parents)))
def ancestors_list(parents):
"""
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
ancestors : [ndarray]
List of arrays of joint idices for
the ancestors of each joint
"""
decendants = descendants_list(parents)
def joint_ancestors(i):
return [j for j in joints(parents) if i in decendants[j]]
return list(map(lambda j: np.array(joint_ancestors(j)), joints(parents)))
""" Mask Functions """
def mask(parents, filter):
"""
Constructs a Mask for a give filter
A mask is a (J, J) ndarray truth table for a given
condition over J joints. For example there
may be a mask specifying if a joint N is a
child of another joint M.
This could be constructed into a mask using
`m = mask(parents, children_list)` and the condition
of childhood tested using `m[N, M]`.
Parameters
----------
parents : (J) ndarray
parents array
filter : (J) ndarray -> [ndarray]
function that outputs a list of arrays
of joint indices for some condition
Returns
-------
mask : (N, N) ndarray
boolean truth table of given condition
"""
m = np.zeros((len(parents), len(parents))).astype(bool)
jnts = joints(parents)
fltr = filter(parents)
for i, f in enumerate(fltr): m[i, :] = np.any(jnts[:, np.newaxis] == f[np.newaxis, :], axis=1)
return m
def joints_mask(parents): return np.eye(len(parents)).astype(bool)
def children_mask(parents): return mask(parents, children_list)
def parents_mask(parents): return mask(parents, parents_list)
def descendants_mask(parents): return mask(parents, descendants_list)
def ancestors_mask(parents): return mask(parents, ancestors_list)
""" Search Functions """
def joint_chain_ascend(parents, start, end):
chain = []
while start != end:
chain.append(start)
start = parents[start]
chain.append(end)
return np.array(chain, dtype=int)
""" Constraints """
def constraints(anim, **kwargs):
"""
Constraint list for Animation
This constraint list can be used in the
VerletParticle solver to constrain
a animation global joint positions.
Parameters
----------
anim : Animation
Input animation
masses : (F, J) ndarray
Optional list of masses
for joints J across frames F
defaults to weighting by
vertical height
Returns
-------
constraints : [(int, int, (F, J) ndarray, (F, J) ndarray, (F, J) ndarray)]
A list of constraints in the format:
(Joint1, Joint2, Masses1, Masses2, Lengths)
"""
masses = kwargs.pop('masses', None)
children = children_list(anim.parents)
constraints = []
points_offsets = Animation.offsets_global(anim)
points = Animation.positions_global(anim)
if masses is None:
masses = 1.0 / (0.1 + np.absolute(points_offsets[:, 1]))
masses = masses[np.newaxis].repeat(len(anim), axis=0)
for j in range(anim.shape[1]):
""" Add constraints between all joints and their children """
for c0 in children[j]:
dists = np.sum((points[:, c0] - points[:, j]) ** 2.0, axis=1) ** 0.5
constraints.append((c0, j, masses[:, c0], masses[:, j], dists))
""" Add constraints between all children of joint """
for c1 in children[j]:
if c0 == c1: continue
dists = np.sum((points[:, c0] - points[:, c1]) ** 2.0, axis=1) ** 0.5
constraints.append((c0, c1, masses[:, c0], masses[:, c1], dists))
return constraints
""" Graph Functions """
def graph(anim):
"""
Generates a weighted adjacency matrix
using local joint distances along
the skeletal structure.
Joints which are not connected
are assigned the weight `0`.
Joints which actually have zero distance
between them, but are still connected, are
perturbed by some minimal amount.
The output of this routine can be used
with the `scipy.sparse.csgraph`
routines for graph analysis.
Parameters
----------
anim : Animation
input animation
Returns
-------
graph : (N, N) ndarray
weight adjacency matrix using
local distances along the
skeletal structure from joint
N to joint M. If joints are not
directly connected are assigned
the weight `0`.
"""
graph = np.zeros(anim.shape[1], anim.shape[1])
lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5 + 0.001
for i, p in enumerate(anim.parents):
if p == -1: continue
graph[i, p] = lengths[p]
graph[p, i] = lengths[p]
return graph
def distances(anim):
"""
Generates a distance matrix for
pairwise joint distances along
the skeletal structure
Parameters
----------
anim : Animation
input animation
Returns
-------
distances : (N, N) ndarray
array of pairwise distances
along skeletal structure
from some joint N to some
joint M
"""
distances = np.zeros((anim.shape[1], anim.shape[1]))
generated = distances.copy().astype(bool)
joint_lengths = np.sum(anim.offsets ** 2.0, axis=1) ** 0.5
joint_children = children_list(anim)
joint_parents = parents_list(anim)
def find_distance(distances, generated, prev, i, j):
""" If root, identity, or already generated, return """
if j == -1: return (0.0, True)
if j == i: return (0.0, True)
if generated[i, j]: return (distances[i, j], True)
""" Find best distances along parents and children """
par_dists = [(joint_lengths[j], find_distance(distances, generated, j, i, p)) for p in joint_parents[j] if
p != prev]
out_dists = [(joint_lengths[c], find_distance(distances, generated, j, i, c)) for c in joint_children[j] if
c != prev]
""" Check valid distance and not dead end """
par_dists = [a + d for (a, (d, f)) in par_dists if f]
out_dists = [a + d for (a, (d, f)) in out_dists if f]
""" All dead ends """
if (out_dists + par_dists) == []: return (0.0, False)
""" Get minimum path """
dist = min(out_dists + par_dists)
distances[i, j] = dist;
distances[j, i] = dist
generated[i, j] = True;
generated[j, i] = True
for i in range(anim.shape[1]):
for j in range(anim.shape[1]):
find_distance(distances, generated, -1, i, j)
return distances
def edges(parents):
"""
Animation structure edges
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
edges : (M, 2) ndarray
array of pairs where each
pair contains two indices of a joints
which corrisponds to an edge in the
joint structure going from parent to child.
"""
return np.array(list(zip(parents, joints(parents)))[1:])
def incidence(parents):
"""
Incidence Matrix
Parameters
----------
parents : (J) ndarray
parents array
Returns
-------
incidence : (N, M) ndarray
Matrix of N joint positions by
M edges which each entry is either
1 or -1 and multiplication by the
joint positions returns the an
array of vectors along each edge
of the structure
"""
es = edges(parents)
inc = np.zeros((len(parents) - 1, len(parents))).astype(np.int)
for i, e in enumerate(es):
inc[i, e[0]] = 1
inc[i, e[1]] = -1
return inc.T
|