MoMask / models /vq /quantizer.py
MeYourHint's picture
first demo version
c0eac48
raw
history blame
6.19 kB
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat, reduce, pack, unpack
# from vector_quantize_pytorch import ResidualVQ
#Borrow from vector_quantize_pytorch
def log(t, eps = 1e-20):
return torch.log(t.clamp(min = eps))
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(
logits,
temperature = 1.,
stochastic = False,
dim = -1,
training = True
):
if training and stochastic and temperature > 0:
sampling_logits = (logits / temperature) + gumbel_noise(logits)
else:
sampling_logits = logits
ind = sampling_logits.argmax(dim = dim)
return ind
class QuantizeEMAReset(nn.Module):
def __init__(self, nb_code, code_dim, args):
super(QuantizeEMAReset, self).__init__()
self.nb_code = nb_code
self.code_dim = code_dim
self.mu = args.mu ##TO_DO
self.reset_codebook()
def reset_codebook(self):
self.init = False
self.code_sum = None
self.code_count = None
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim, requires_grad=False).cuda())
def _tile(self, x):
nb_code_x, code_dim = x.shape
if nb_code_x < self.nb_code:
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
std = 0.01 / np.sqrt(code_dim)
out = x.repeat(n_repeats, 1)
out = out + torch.randn_like(out) * std
else:
out = x
return out
def init_codebook(self, x):
out = self._tile(x)
self.codebook = out[:self.nb_code]
self.code_sum = self.codebook.clone()
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
self.init = True
def quantize(self, x, sample_codebook_temp=0.):
# N X C -> C X N
k_w = self.codebook.t()
# x: NT X C
# NT X N
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - \
2 * torch.matmul(x, k_w) + \
torch.sum(k_w ** 2, dim=0, keepdim=True) # (N * L, b)
# code_idx = torch.argmin(distance, dim=-1)
code_idx = gumbel_sample(-distance, dim = -1, temperature = sample_codebook_temp, stochastic=True, training = self.training)
return code_idx
def dequantize(self, code_idx):
x = F.embedding(code_idx, self.codebook)
return x
def get_codebook_entry(self, indices):
return self.dequantize(indices).permute(0, 2, 1)
@torch.no_grad()
def compute_perplexity(self, code_idx):
# Calculate new centres
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
code_count = code_onehot.sum(dim=-1) # nb_code
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
@torch.no_grad()
def update_codebook(self, x, code_idx):
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
code_sum = torch.matmul(code_onehot, x) # nb_code, c
code_count = code_onehot.sum(dim=-1) # nb_code
out = self._tile(x)
code_rand = out[:self.nb_code]
# Update centres
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
self.codebook = usage * code_update + (1-usage) * code_rand
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def preprocess(self, x):
# NCT -> NTC -> [NT, C]
# x = x.permute(0, 2, 1).contiguous()
# x = x.view(-1, x.shape[-1])
x = rearrange(x, 'n c t -> (n t) c')
return x
def forward(self, x, return_idx=False, temperature=0.):
N, width, T = x.shape
x = self.preprocess(x)
if self.training and not self.init:
self.init_codebook(x)
code_idx = self.quantize(x, temperature)
x_d = self.dequantize(code_idx)
if self.training:
perplexity = self.update_codebook(x, code_idx)
else:
perplexity = self.compute_perplexity(code_idx)
commit_loss = F.mse_loss(x, x_d.detach()) # It's right. the t2m-gpt paper is wrong on embed loss and commitment loss.
# Passthrough
x_d = x + (x_d - x).detach()
# Postprocess
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous()
code_idx = code_idx.view(N, T).contiguous()
# print(code_idx[0])
if return_idx:
return x_d, code_idx, commit_loss, perplexity
return x_d, commit_loss, perplexity
class QuantizeEMA(QuantizeEMAReset):
@torch.no_grad()
def update_codebook(self, x, code_idx):
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
code_sum = torch.matmul(code_onehot, x) # nb_code, c
code_count = code_onehot.sum(dim=-1) # nb_code
# Update centres
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
self.codebook = usage * code_update + (1-usage) * self.codebook
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity