Spaces:
Running
Running
import numpy as np | |
# Calculate cross object of two 3D vectors. | |
def _fast_cross(a, b): | |
return np.concatenate([ | |
a[...,1:2]*b[...,2:3] - a[...,2:3]*b[...,1:2], | |
a[...,2:3]*b[...,0:1] - a[...,0:1]*b[...,2:3], | |
a[...,0:1]*b[...,1:2] - a[...,1:2]*b[...,0:1]], axis=-1) | |
# Make origin quaternions (No rotations) | |
def eye(shape, dtype=np.float32): | |
return np.ones(list(shape) + [4], dtype=dtype) * np.asarray([1, 0, 0, 0], dtype=dtype) | |
# Return norm of quaternions | |
def length(x): | |
return np.sqrt(np.sum(x * x, axis=-1)) | |
# Make unit quaternions | |
def normalize(x, eps=1e-8): | |
return x / (length(x)[...,None] + eps) | |
def abs(x): | |
return np.where(x[...,0:1] > 0.0, x, -x) | |
# Calculate inverse rotations | |
def inv(q): | |
return np.array([1, -1, -1, -1], dtype=np.float32) * q | |
# Calculate the dot product of two quaternions | |
def dot(x, y): | |
return np.sum(x * y, axis=-1)[...,None] if x.ndim > 1 else np.sum(x * y, axis=-1) | |
# Multiply two quaternions (return rotations). | |
def mul(x, y): | |
x0, x1, x2, x3 = x[..., 0:1], x[..., 1:2], x[..., 2:3], x[..., 3:4] | |
y0, y1, y2, y3 = y[..., 0:1], y[..., 1:2], y[..., 2:3], y[..., 3:4] | |
return np.concatenate([ | |
y0 * x0 - y1 * x1 - y2 * x2 - y3 * x3, | |
y0 * x1 + y1 * x0 - y2 * x3 + y3 * x2, | |
y0 * x2 + y1 * x3 + y2 * x0 - y3 * x1, | |
y0 * x3 - y1 * x2 + y2 * x1 + y3 * x0], axis=-1) | |
def inv_mul(x, y): | |
return mul(inv(x), y) | |
def mul_inv(x, y): | |
return mul(x, inv(y)) | |
# Multiply quaternions and vectors (return vectors). | |
def mul_vec(q, x): | |
t = 2.0 * _fast_cross(q[..., 1:], x) | |
return x + q[..., 0][..., None] * t + _fast_cross(q[..., 1:], t) | |
def inv_mul_vec(q, x): | |
return mul_vec(inv(q), x) | |
def unroll(x): | |
y = x.copy() | |
for i in range(1, len(x)): | |
d0 = np.sum( y[i] * y[i-1], axis=-1) | |
d1 = np.sum(-y[i] * y[i-1], axis=-1) | |
y[i][d0 < d1] = -y[i][d0 < d1] | |
return y | |
# Calculate quaternions between two 3D vectors (x to y). | |
def between(x, y): | |
return np.concatenate([ | |
np.sqrt(np.sum(x*x, axis=-1) * np.sum(y*y, axis=-1))[...,None] + | |
np.sum(x * y, axis=-1)[...,None], | |
_fast_cross(x, y)], axis=-1) | |
def log(x, eps=1e-5): | |
length = np.sqrt(np.sum(np.square(x[...,1:]), axis=-1))[...,None] | |
halfangle = np.where(length < eps, np.ones_like(length), np.arctan2(length, x[...,0:1]) / length) | |
return halfangle * x[...,1:] | |
def exp(x, eps=1e-5): | |
halfangle = np.sqrt(np.sum(np.square(x), axis=-1))[...,None] | |
c = np.where(halfangle < eps, np.ones_like(halfangle), np.cos(halfangle)) | |
s = np.where(halfangle < eps, np.ones_like(halfangle), np.sinc(halfangle / np.pi)) | |
return np.concatenate([c, s * x], axis=-1) | |
# Calculate global space rotations and positions from local space. | |
def fk(lrot, lpos, parents): | |
gp, gr = [lpos[...,:1,:]], [lrot[...,:1,:]] | |
for i in range(1, len(parents)): | |
gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]]) | |
gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:])) | |
return np.concatenate(gr, axis=-2), np.concatenate(gp, axis=-2) | |
def fk_rot(lrot, parents): | |
gr = [lrot[...,:1,:]] | |
for i in range(1, len(parents)): | |
gr.append(mul(gr[parents[i]], lrot[...,i:i+1,:])) | |
return np.concatenate(gr, axis=-2) | |
# Calculate local space rotations and positions from global space. | |
def ik(grot, gpos, parents): | |
return ( | |
np.concatenate([ | |
grot[...,:1,:], | |
mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]), | |
], axis=-2), | |
np.concatenate([ | |
gpos[...,:1,:], | |
mul_vec( | |
inv(grot[...,parents[1:],:]), | |
gpos[...,1:,:] - gpos[...,parents[1:],:]), | |
], axis=-2)) | |
def ik_rot(grot, parents): | |
return np.concatenate([grot[...,:1,:], | |
mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]), | |
], axis=-2) | |
def fk_vel(lrot, lpos, lvel, lang, parents): | |
gp, gr, gv, ga = [lpos[...,:1,:]], [lrot[...,:1,:]], [lvel[...,:1,:]], [lang[...,:1,:]] | |
for i in range(1, len(parents)): | |
gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]]) | |
gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:])) | |
gv.append(mul_vec(gr[parents[i]], lvel[...,i:i+1,:]) + | |
_fast_cross(ga[parents[i]], mul_vec(gr[parents[i]], lpos[...,i:i+1,:])) + | |
gv[parents[i]]) | |
ga.append(mul_vec(gr[parents[i]], lang[...,i:i+1,:]) + ga[parents[i]]) | |
return ( | |
np.concatenate(gr, axis=-2), | |
np.concatenate(gp, axis=-2), | |
np.concatenate(gv, axis=-2), | |
np.concatenate(ga, axis=-2)) | |
# Linear Interpolation of two vectors | |
def lerp(x, y, t): | |
return (1 - t) * x + t * y | |
# LERP of quaternions | |
def quat_lerp(x, y, t): | |
return normalize(lerp(x, y, t)) | |
# Spherical linear interpolation of quaternions | |
def slerp(x, y, t): | |
if t == 0: | |
return x | |
elif t == 1: | |
return y | |
if dot(x, y) < 0: | |
y = - y | |
ca = dot(x, y) | |
theta = np.arccos(np.clip(ca, 0, 1)) | |
r = normalize(y - x * ca) | |
return x * np.cos(theta * t) + r * np.sin(theta * t) | |
################################################### | |
# Calculate other rotations from other quaternions. | |
################################################### | |
# Calculate euler angles from quaternions. | |
def to_euler(x, order='zyx'): | |
q0 = x[...,0:1] | |
q1 = x[...,1:2] | |
q2 = x[...,2:3] | |
q3 = x[...,3:4] | |
if order == 'zyx': | |
return np.concatenate([ | |
np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)), | |
np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1)), | |
np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))], axis=-1) | |
elif order == 'yzx': | |
return np.concatenate([ | |
np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0), | |
np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1)), | |
np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)],axis=-1) | |
elif order == 'zxy': | |
return np.concatenate([ | |
np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3), | |
np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)), | |
np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)], axis=-1) | |
elif order == 'yxz': | |
return np.concatenate([ | |
np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3), | |
np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)), | |
np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)], axis=-1) | |
else: | |
raise NotImplementedError('Cannot convert from ordering %s' % order) | |
# Calculate rotation matrix from quaternions. | |
def to_xform(x): | |
qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4] | |
x2, y2, z2 = qx + qx, qy + qy, qz + qz | |
xx, yy, wx = qx * x2, qy * y2, qw * x2 | |
xy, yz, wy = qx * y2, qy * z2, qw * y2 | |
xz, zz, wz = qx * z2, qz * z2, qw * z2 | |
return np.concatenate([ | |
np.concatenate([1.0 - (yy + zz), xy - wz, xz + wy], axis=-1)[...,None,:], | |
np.concatenate([xy + wz, 1.0 - (xx + zz), yz - wx], axis=-1)[...,None,:], | |
np.concatenate([xz - wy, yz + wx, 1.0 - (xx + yy)], axis=-1)[...,None,:], | |
], axis=-2) | |
# Calculate 6d orthogonal rotation representation (ortho6d) from quaternions. | |
# https://github.com/papagina/RotationContinuity | |
def to_xform_xy(x): | |
qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4] | |
x2, y2, z2 = qx + qx, qy + qy, qz + qz | |
xx, yy, wx = qx * x2, qy * y2, qw * x2 | |
xy, yz, wy = qx * y2, qy * z2, qw * y2 | |
xz, zz, wz = qx * z2, qz * z2, qw * z2 | |
return np.concatenate([ | |
np.concatenate([1.0 - (yy + zz), xy - wz], axis=-1)[...,None,:], | |
np.concatenate([xy + wz, 1.0 - (xx + zz)], axis=-1)[...,None,:], | |
np.concatenate([xz - wy, yz + wx], axis=-1)[...,None,:], | |
], axis=-2) | |
# Calculate scaled angle axis from quaternions. | |
def to_scaled_angle_axis(x, eps=1e-5): | |
return 2.0 * log(x, eps) | |
############################################# | |
# Calculate quaternions from other rotations. | |
############################################# | |
# Calculate quaternions from axis angles. | |
def from_angle_axis(angle, axis): | |
c = np.cos(angle / 2.0)[..., None] | |
s = np.sin(angle / 2.0)[..., None] | |
q = np.concatenate([c, s * axis], axis=-1) | |
return q | |
# Calculate quaternions from axis-angle. | |
def from_axis_angle(rots): | |
angle = np.linalg.norm(rots, axis=-1) | |
axis = rots / angle[...,None] | |
return from_angle_axis(angle, axis) | |
# Calculate quaternions from euler angles. | |
def from_euler(e, order='zyx'): | |
axis = { | |
'x': np.asarray([1, 0, 0], dtype=np.float32), | |
'y': np.asarray([0, 1, 0], dtype=np.float32), | |
'z': np.asarray([0, 0, 1], dtype=np.float32)} | |
q0 = from_angle_axis(e[..., 0], axis[order[0]]) | |
q1 = from_angle_axis(e[..., 1], axis[order[1]]) | |
q2 = from_angle_axis(e[..., 2], axis[order[2]]) | |
return mul(q0, mul(q1, q2)) | |
# Calculate quaternions from rotation matrix. | |
def from_xform(ts): | |
return normalize( | |
np.where((ts[...,2,2] < 0.0)[...,None], | |
np.where((ts[...,0,0] > ts[...,1,1])[...,None], | |
np.concatenate([ | |
(ts[...,2,1]-ts[...,1,2])[...,None], | |
(1.0 + ts[...,0,0] - ts[...,1,1] - ts[...,2,2])[...,None], | |
(ts[...,1,0]+ts[...,0,1])[...,None], | |
(ts[...,0,2]+ts[...,2,0])[...,None]], axis=-1), | |
np.concatenate([ | |
(ts[...,0,2]-ts[...,2,0])[...,None], | |
(ts[...,1,0]+ts[...,0,1])[...,None], | |
(1.0 - ts[...,0,0] + ts[...,1,1] - ts[...,2,2])[...,None], | |
(ts[...,2,1]+ts[...,1,2])[...,None]], axis=-1)), | |
np.where((ts[...,0,0] < -ts[...,1,1])[...,None], | |
np.concatenate([ | |
(ts[...,1,0]-ts[...,0,1])[...,None], | |
(ts[...,0,2]+ts[...,2,0])[...,None], | |
(ts[...,2,1]+ts[...,1,2])[...,None], | |
(1.0 - ts[...,0,0] - ts[...,1,1] + ts[...,2,2])[...,None]], axis=-1), | |
np.concatenate([ | |
(1.0 + ts[...,0,0] + ts[...,1,1] + ts[...,2,2])[...,None], | |
(ts[...,2,1]-ts[...,1,2])[...,None], | |
(ts[...,0,2]-ts[...,2,0])[...,None], | |
(ts[...,1,0]-ts[...,0,1])[...,None]], axis=-1)))) | |
# Calculate quaternions from ortho6d. | |
def from_xform_xy(x): | |
c2 = _fast_cross(x[...,0], x[...,1]) | |
c2 = c2 / np.sqrt(np.sum(np.square(c2), axis=-1))[...,None] | |
c1 = _fast_cross(c2, x[...,0]) | |
c1 = c1 / np.sqrt(np.sum(np.square(c1), axis=-1))[...,None] | |
c0 = x[...,0] | |
return from_xform(np.concatenate([ | |
c0[...,None], | |
c1[...,None], | |
c2[...,None]], axis=-1)) | |
# Calculate quaternions from scaled angle axis. | |
def from_scaled_angle_axis(x, eps=1e-5): | |
return exp(x / 2.0, eps) |