MeYourHint's picture
first demo version
c0eac48
raw
history blame
11.2 kB
import numpy as np
# Calculate cross object of two 3D vectors.
def _fast_cross(a, b):
return np.concatenate([
a[...,1:2]*b[...,2:3] - a[...,2:3]*b[...,1:2],
a[...,2:3]*b[...,0:1] - a[...,0:1]*b[...,2:3],
a[...,0:1]*b[...,1:2] - a[...,1:2]*b[...,0:1]], axis=-1)
# Make origin quaternions (No rotations)
def eye(shape, dtype=np.float32):
return np.ones(list(shape) + [4], dtype=dtype) * np.asarray([1, 0, 0, 0], dtype=dtype)
# Return norm of quaternions
def length(x):
return np.sqrt(np.sum(x * x, axis=-1))
# Make unit quaternions
def normalize(x, eps=1e-8):
return x / (length(x)[...,None] + eps)
def abs(x):
return np.where(x[...,0:1] > 0.0, x, -x)
# Calculate inverse rotations
def inv(q):
return np.array([1, -1, -1, -1], dtype=np.float32) * q
# Calculate the dot product of two quaternions
def dot(x, y):
return np.sum(x * y, axis=-1)[...,None] if x.ndim > 1 else np.sum(x * y, axis=-1)
# Multiply two quaternions (return rotations).
def mul(x, y):
x0, x1, x2, x3 = x[..., 0:1], x[..., 1:2], x[..., 2:3], x[..., 3:4]
y0, y1, y2, y3 = y[..., 0:1], y[..., 1:2], y[..., 2:3], y[..., 3:4]
return np.concatenate([
y0 * x0 - y1 * x1 - y2 * x2 - y3 * x3,
y0 * x1 + y1 * x0 - y2 * x3 + y3 * x2,
y0 * x2 + y1 * x3 + y2 * x0 - y3 * x1,
y0 * x3 - y1 * x2 + y2 * x1 + y3 * x0], axis=-1)
def inv_mul(x, y):
return mul(inv(x), y)
def mul_inv(x, y):
return mul(x, inv(y))
# Multiply quaternions and vectors (return vectors).
def mul_vec(q, x):
t = 2.0 * _fast_cross(q[..., 1:], x)
return x + q[..., 0][..., None] * t + _fast_cross(q[..., 1:], t)
def inv_mul_vec(q, x):
return mul_vec(inv(q), x)
def unroll(x):
y = x.copy()
for i in range(1, len(x)):
d0 = np.sum( y[i] * y[i-1], axis=-1)
d1 = np.sum(-y[i] * y[i-1], axis=-1)
y[i][d0 < d1] = -y[i][d0 < d1]
return y
# Calculate quaternions between two 3D vectors (x to y).
def between(x, y):
return np.concatenate([
np.sqrt(np.sum(x*x, axis=-1) * np.sum(y*y, axis=-1))[...,None] +
np.sum(x * y, axis=-1)[...,None],
_fast_cross(x, y)], axis=-1)
def log(x, eps=1e-5):
length = np.sqrt(np.sum(np.square(x[...,1:]), axis=-1))[...,None]
halfangle = np.where(length < eps, np.ones_like(length), np.arctan2(length, x[...,0:1]) / length)
return halfangle * x[...,1:]
def exp(x, eps=1e-5):
halfangle = np.sqrt(np.sum(np.square(x), axis=-1))[...,None]
c = np.where(halfangle < eps, np.ones_like(halfangle), np.cos(halfangle))
s = np.where(halfangle < eps, np.ones_like(halfangle), np.sinc(halfangle / np.pi))
return np.concatenate([c, s * x], axis=-1)
# Calculate global space rotations and positions from local space.
def fk(lrot, lpos, parents):
gp, gr = [lpos[...,:1,:]], [lrot[...,:1,:]]
for i in range(1, len(parents)):
gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]])
gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:]))
return np.concatenate(gr, axis=-2), np.concatenate(gp, axis=-2)
def fk_rot(lrot, parents):
gr = [lrot[...,:1,:]]
for i in range(1, len(parents)):
gr.append(mul(gr[parents[i]], lrot[...,i:i+1,:]))
return np.concatenate(gr, axis=-2)
# Calculate local space rotations and positions from global space.
def ik(grot, gpos, parents):
return (
np.concatenate([
grot[...,:1,:],
mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]),
], axis=-2),
np.concatenate([
gpos[...,:1,:],
mul_vec(
inv(grot[...,parents[1:],:]),
gpos[...,1:,:] - gpos[...,parents[1:],:]),
], axis=-2))
def ik_rot(grot, parents):
return np.concatenate([grot[...,:1,:],
mul(inv(grot[...,parents[1:],:]), grot[...,1:,:]),
], axis=-2)
def fk_vel(lrot, lpos, lvel, lang, parents):
gp, gr, gv, ga = [lpos[...,:1,:]], [lrot[...,:1,:]], [lvel[...,:1,:]], [lang[...,:1,:]]
for i in range(1, len(parents)):
gp.append(mul_vec(gr[parents[i]], lpos[...,i:i+1,:]) + gp[parents[i]])
gr.append(mul (gr[parents[i]], lrot[...,i:i+1,:]))
gv.append(mul_vec(gr[parents[i]], lvel[...,i:i+1,:]) +
_fast_cross(ga[parents[i]], mul_vec(gr[parents[i]], lpos[...,i:i+1,:])) +
gv[parents[i]])
ga.append(mul_vec(gr[parents[i]], lang[...,i:i+1,:]) + ga[parents[i]])
return (
np.concatenate(gr, axis=-2),
np.concatenate(gp, axis=-2),
np.concatenate(gv, axis=-2),
np.concatenate(ga, axis=-2))
# Linear Interpolation of two vectors
def lerp(x, y, t):
return (1 - t) * x + t * y
# LERP of quaternions
def quat_lerp(x, y, t):
return normalize(lerp(x, y, t))
# Spherical linear interpolation of quaternions
def slerp(x, y, t):
if t == 0:
return x
elif t == 1:
return y
if dot(x, y) < 0:
y = - y
ca = dot(x, y)
theta = np.arccos(np.clip(ca, 0, 1))
r = normalize(y - x * ca)
return x * np.cos(theta * t) + r * np.sin(theta * t)
###################################################
# Calculate other rotations from other quaternions.
###################################################
# Calculate euler angles from quaternions.
def to_euler(x, order='zyx'):
q0 = x[...,0:1]
q1 = x[...,1:2]
q2 = x[...,2:3]
q3 = x[...,3:4]
if order == 'zyx':
return np.concatenate([
np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3)),
np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1)),
np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))], axis=-1)
elif order == 'yzx':
return np.concatenate([
np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0),
np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1)),
np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)],axis=-1)
elif order == 'zxy':
return np.concatenate([
np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3),
np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1)),
np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)], axis=-1)
elif order == 'yxz':
return np.concatenate([
np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3),
np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1)),
np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)], axis=-1)
else:
raise NotImplementedError('Cannot convert from ordering %s' % order)
# Calculate rotation matrix from quaternions.
def to_xform(x):
qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4]
x2, y2, z2 = qx + qx, qy + qy, qz + qz
xx, yy, wx = qx * x2, qy * y2, qw * x2
xy, yz, wy = qx * y2, qy * z2, qw * y2
xz, zz, wz = qx * z2, qz * z2, qw * z2
return np.concatenate([
np.concatenate([1.0 - (yy + zz), xy - wz, xz + wy], axis=-1)[...,None,:],
np.concatenate([xy + wz, 1.0 - (xx + zz), yz - wx], axis=-1)[...,None,:],
np.concatenate([xz - wy, yz + wx, 1.0 - (xx + yy)], axis=-1)[...,None,:],
], axis=-2)
# Calculate 6d orthogonal rotation representation (ortho6d) from quaternions.
# https://github.com/papagina/RotationContinuity
def to_xform_xy(x):
qw, qx, qy, qz = x[...,0:1], x[...,1:2], x[...,2:3], x[...,3:4]
x2, y2, z2 = qx + qx, qy + qy, qz + qz
xx, yy, wx = qx * x2, qy * y2, qw * x2
xy, yz, wy = qx * y2, qy * z2, qw * y2
xz, zz, wz = qx * z2, qz * z2, qw * z2
return np.concatenate([
np.concatenate([1.0 - (yy + zz), xy - wz], axis=-1)[...,None,:],
np.concatenate([xy + wz, 1.0 - (xx + zz)], axis=-1)[...,None,:],
np.concatenate([xz - wy, yz + wx], axis=-1)[...,None,:],
], axis=-2)
# Calculate scaled angle axis from quaternions.
def to_scaled_angle_axis(x, eps=1e-5):
return 2.0 * log(x, eps)
#############################################
# Calculate quaternions from other rotations.
#############################################
# Calculate quaternions from axis angles.
def from_angle_axis(angle, axis):
c = np.cos(angle / 2.0)[..., None]
s = np.sin(angle / 2.0)[..., None]
q = np.concatenate([c, s * axis], axis=-1)
return q
# Calculate quaternions from axis-angle.
def from_axis_angle(rots):
angle = np.linalg.norm(rots, axis=-1)
axis = rots / angle[...,None]
return from_angle_axis(angle, axis)
# Calculate quaternions from euler angles.
def from_euler(e, order='zyx'):
axis = {
'x': np.asarray([1, 0, 0], dtype=np.float32),
'y': np.asarray([0, 1, 0], dtype=np.float32),
'z': np.asarray([0, 0, 1], dtype=np.float32)}
q0 = from_angle_axis(e[..., 0], axis[order[0]])
q1 = from_angle_axis(e[..., 1], axis[order[1]])
q2 = from_angle_axis(e[..., 2], axis[order[2]])
return mul(q0, mul(q1, q2))
# Calculate quaternions from rotation matrix.
def from_xform(ts):
return normalize(
np.where((ts[...,2,2] < 0.0)[...,None],
np.where((ts[...,0,0] > ts[...,1,1])[...,None],
np.concatenate([
(ts[...,2,1]-ts[...,1,2])[...,None],
(1.0 + ts[...,0,0] - ts[...,1,1] - ts[...,2,2])[...,None],
(ts[...,1,0]+ts[...,0,1])[...,None],
(ts[...,0,2]+ts[...,2,0])[...,None]], axis=-1),
np.concatenate([
(ts[...,0,2]-ts[...,2,0])[...,None],
(ts[...,1,0]+ts[...,0,1])[...,None],
(1.0 - ts[...,0,0] + ts[...,1,1] - ts[...,2,2])[...,None],
(ts[...,2,1]+ts[...,1,2])[...,None]], axis=-1)),
np.where((ts[...,0,0] < -ts[...,1,1])[...,None],
np.concatenate([
(ts[...,1,0]-ts[...,0,1])[...,None],
(ts[...,0,2]+ts[...,2,0])[...,None],
(ts[...,2,1]+ts[...,1,2])[...,None],
(1.0 - ts[...,0,0] - ts[...,1,1] + ts[...,2,2])[...,None]], axis=-1),
np.concatenate([
(1.0 + ts[...,0,0] + ts[...,1,1] + ts[...,2,2])[...,None],
(ts[...,2,1]-ts[...,1,2])[...,None],
(ts[...,0,2]-ts[...,2,0])[...,None],
(ts[...,1,0]-ts[...,0,1])[...,None]], axis=-1))))
# Calculate quaternions from ortho6d.
def from_xform_xy(x):
c2 = _fast_cross(x[...,0], x[...,1])
c2 = c2 / np.sqrt(np.sum(np.square(c2), axis=-1))[...,None]
c1 = _fast_cross(c2, x[...,0])
c1 = c1 / np.sqrt(np.sum(np.square(c1), axis=-1))[...,None]
c0 = x[...,0]
return from_xform(np.concatenate([
c0[...,None],
c1[...,None],
c2[...,None]], axis=-1))
# Calculate quaternions from scaled angle axis.
def from_scaled_angle_axis(x, eps=1e-5):
return exp(x / 2.0, eps)