MoMask / models /t2m_eval_wrapper.py
MeYourHint's picture
first demo version
c0eac48
from models.t2m_eval_modules import *
from utils.word_vectorizer import POS_enumerator
from os.path import join as pjoin
def build_models(opt):
movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
pos_size=opt.dim_pos_ohot,
hidden_size=opt.dim_text_hidden,
output_size=opt.dim_coemb_hidden,
device=opt.device)
motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
hidden_size=opt.dim_motion_hidden,
output_size=opt.dim_coemb_hidden,
device=opt.device)
checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
map_location=opt.device)
movement_enc.load_state_dict(checkpoint['movement_encoder'])
text_enc.load_state_dict(checkpoint['text_encoder'])
motion_enc.load_state_dict(checkpoint['motion_encoder'])
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
return text_enc, motion_enc, movement_enc
class EvaluatorModelWrapper(object):
def __init__(self, opt):
if opt.dataset_name == 't2m':
opt.dim_pose = 263
elif opt.dataset_name == 'kit':
opt.dim_pose = 251
else:
raise KeyError('Dataset not Recognized!!!')
opt.dim_word = 300
opt.max_motion_length = 196
opt.dim_pos_ohot = len(POS_enumerator)
opt.dim_motion_hidden = 1024
opt.max_text_len = 20
opt.dim_text_hidden = 512
opt.dim_coemb_hidden = 512
# print(opt)
self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
self.opt = opt
self.device = opt.device
self.text_encoder.to(opt.device)
self.motion_encoder.to(opt.device)
self.movement_encoder.to(opt.device)
self.text_encoder.eval()
self.motion_encoder.eval()
self.movement_encoder.eval()
# Please note that the results does not follow the order of inputs
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
with torch.no_grad():
word_embs = word_embs.detach().to(self.device).float()
pos_ohot = pos_ohot.detach().to(self.device).float()
motions = motions.detach().to(self.device).float()
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
motions = motions[align_idx]
m_lens = m_lens[align_idx]
'''Movement Encoding'''
movements = self.movement_encoder(motions[..., :-4]).detach()
m_lens = m_lens // self.opt.unit_length
motion_embedding = self.motion_encoder(movements, m_lens)
'''Text Encoding'''
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
text_embedding = text_embedding[align_idx]
return text_embedding, motion_embedding
# Please note that the results does not follow the order of inputs
def get_motion_embeddings(self, motions, m_lens):
with torch.no_grad():
motions = motions.detach().to(self.device).float()
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
motions = motions[align_idx]
m_lens = m_lens[align_idx]
'''Movement Encoding'''
movements = self.movement_encoder(motions[..., :-4]).detach()
m_lens = m_lens // self.opt.unit_length
motion_embedding = self.motion_encoder(movements, m_lens)
return motion_embedding
## Borrowed form MDM
# our version
def build_evaluators(opt):
movement_enc = MovementConvEncoder(opt['dim_pose']-4, opt['dim_movement_enc_hidden'], opt['dim_movement_latent'])
text_enc = TextEncoderBiGRUCo(word_size=opt['dim_word'],
pos_size=opt['dim_pos_ohot'],
hidden_size=opt['dim_text_hidden'],
output_size=opt['dim_coemb_hidden'],
device=opt['device'])
motion_enc = MotionEncoderBiGRUCo(input_size=opt['dim_movement_latent'],
hidden_size=opt['dim_motion_hidden'],
output_size=opt['dim_coemb_hidden'],
device=opt['device'])
ckpt_dir = opt['dataset_name']
if opt['dataset_name'] == 'humanml':
ckpt_dir = 't2m'
checkpoint = torch.load(pjoin(opt['checkpoints_dir'], ckpt_dir, 'text_mot_match', 'model', 'finest.tar'),
map_location=opt['device'])
movement_enc.load_state_dict(checkpoint['movement_encoder'])
text_enc.load_state_dict(checkpoint['text_encoder'])
motion_enc.load_state_dict(checkpoint['motion_encoder'])
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
return text_enc, motion_enc, movement_enc
# our wrapper
class EvaluatorWrapper(object):
def __init__(self, dataset_name, device):
opt = {
'dataset_name': dataset_name,
'device': device,
'dim_word': 300,
'max_motion_length': 196,
'dim_pos_ohot': len(POS_enumerator),
'dim_motion_hidden': 1024,
'max_text_len': 20,
'dim_text_hidden': 512,
'dim_coemb_hidden': 512,
'dim_pose': 263 if dataset_name == 'humanml' else 251,
'dim_movement_enc_hidden': 512,
'dim_movement_latent': 512,
'checkpoints_dir': './checkpoints',
'unit_length': 4,
}
self.text_encoder, self.motion_encoder, self.movement_encoder = build_evaluators(opt)
self.opt = opt
self.device = opt['device']
self.text_encoder.to(opt['device'])
self.motion_encoder.to(opt['device'])
self.movement_encoder.to(opt['device'])
self.text_encoder.eval()
self.motion_encoder.eval()
self.movement_encoder.eval()
# Please note that the results does not following the order of inputs
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
with torch.no_grad():
word_embs = word_embs.detach().to(self.device).float()
pos_ohot = pos_ohot.detach().to(self.device).float()
motions = motions.detach().to(self.device).float()
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
motions = motions[align_idx]
m_lens = m_lens[align_idx]
'''Movement Encoding'''
movements = self.movement_encoder(motions[..., :-4]).detach()
m_lens = m_lens // self.opt['unit_length']
motion_embedding = self.motion_encoder(movements, m_lens)
# print(motions.shape, movements.shape, motion_embedding.shape, m_lens)
'''Text Encoding'''
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
text_embedding = text_embedding[align_idx]
return text_embedding, motion_embedding
# Please note that the results does not following the order of inputs
def get_motion_embeddings(self, motions, m_lens):
with torch.no_grad():
motions = motions.detach().to(self.device).float()
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
motions = motions[align_idx]
m_lens = m_lens[align_idx]
'''Movement Encoding'''
movements = self.movement_encoder(motions[..., :-4]).detach()
m_lens = m_lens // self.opt['unit_length']
motion_embedding = self.motion_encoder(movements, m_lens)
return motion_embedding