Spaces:
Running
Running
MeYourHint
commited on
Commit
·
55262a8
1
Parent(s):
599b6c9
sdk version check
Browse files
README.md
CHANGED
@@ -4,229 +4,7 @@ emoji: 🎭
|
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: True
|
10 |
-
---
|
11 |
-
|
12 |
-
# MoMask: Generative Masked Modeling of 3D Human Motions
|
13 |
-
## [[Project Page]](https://ericguo5513.github.io/momask) [[Paper]](https://arxiv.org/abs/2312.00063)
|
14 |
-
![teaser_image](https://ericguo5513.github.io/momask/static/images/teaser.png)
|
15 |
-
|
16 |
-
If you find our code or paper helpful, please consider citing:
|
17 |
-
```
|
18 |
-
@article{guo2023momask,
|
19 |
-
title={MoMask: Generative Masked Modeling of 3D Human Motions},
|
20 |
-
author={Chuan Guo and Yuxuan Mu and Muhammad Gohar Javed and Sen Wang and Li Cheng},
|
21 |
-
year={2023},
|
22 |
-
eprint={2312.00063},
|
23 |
-
archivePrefix={arXiv},
|
24 |
-
primaryClass={cs.CV}
|
25 |
-
}
|
26 |
-
```
|
27 |
-
|
28 |
-
## :postbox: News
|
29 |
-
📢 **2023-12-19** --- Release scripts for temporal inpainting.
|
30 |
-
|
31 |
-
📢 **2023-12-15** --- Release codes and models for momask. Including training/eval/generation scripts.
|
32 |
-
|
33 |
-
📢 **2023-11-29** --- Initialized the webpage and git project.
|
34 |
-
|
35 |
-
|
36 |
-
## :round_pushpin: Get You Ready
|
37 |
-
|
38 |
-
<details>
|
39 |
-
|
40 |
-
### 1. Conda Environment
|
41 |
-
```
|
42 |
-
conda env create -f environment.yml
|
43 |
-
conda activate momask
|
44 |
-
pip install git+https://github.com/openai/CLIP.git
|
45 |
-
```
|
46 |
-
We test our code on Python 3.7.13 and PyTorch 1.7.1
|
47 |
-
|
48 |
-
|
49 |
-
### 2. Models and Dependencies
|
50 |
-
|
51 |
-
#### Download Pre-trained Models
|
52 |
-
```
|
53 |
-
bash prepare/download_models.sh
|
54 |
-
```
|
55 |
-
|
56 |
-
#### Download Evaluation Models and Gloves
|
57 |
-
For evaluation only.
|
58 |
-
```
|
59 |
-
bash prepare/download_evaluator.sh
|
60 |
-
bash prepare/download_glove.sh
|
61 |
-
```
|
62 |
-
|
63 |
-
#### Troubleshooting
|
64 |
-
To address the download error related to gdown: "Cannot retrieve the public link of the file. You may need to change the permission to 'Anyone with the link', or have had many accesses". A potential solution is to run `pip install --upgrade --no-cache-dir gdown`, as suggested on https://github.com/wkentaro/gdown/issues/43. This should help resolve the issue.
|
65 |
-
|
66 |
-
#### (Optional) Download Mannually
|
67 |
-
Visit [[Google Drive]](https://drive.google.com/drive/folders/1b3GnAbERH8jAoO5mdWgZhyxHB73n23sK?usp=drive_link) to download the models and evaluators mannually.
|
68 |
-
|
69 |
-
### 3. Get Data
|
70 |
-
|
71 |
-
You have two options here:
|
72 |
-
* **Skip getting data**, if you just want to generate motions using *own* descriptions.
|
73 |
-
* **Get full data**, if you want to *re-train* and *evaluate* the model.
|
74 |
-
|
75 |
-
**(a). Full data (text + motion)**
|
76 |
-
|
77 |
-
**HumanML3D** - Follow the instruction in [HumanML3D](https://github.com/EricGuo5513/HumanML3D.git), then copy the result dataset to our repository:
|
78 |
-
```
|
79 |
-
cp -r ../HumanML3D/HumanML3D ./dataset/HumanML3D
|
80 |
-
```
|
81 |
-
**KIT**-Download from [HumanML3D](https://github.com/EricGuo5513/HumanML3D.git), then place result in `./dataset/KIT-ML`
|
82 |
-
|
83 |
-
####
|
84 |
-
|
85 |
-
</details>
|
86 |
-
|
87 |
-
## :rocket: Demo
|
88 |
-
<details>
|
89 |
-
|
90 |
-
### (a) Generate from a single prompt
|
91 |
-
```
|
92 |
-
python gen_t2m.py --gpu_id 1 --ext exp1 --text_prompt "A person is running on a treadmill."
|
93 |
-
```
|
94 |
-
### (b) Generate from a prompt file
|
95 |
-
An example of prompt file is given in `./assets/text_prompt.txt`. Please follow the format of `<text description>#<motion length>` at each line. Motion length indicates the number of poses, which must be integeter and will be rounded by 4. In our work, motion is in 20 fps.
|
96 |
-
|
97 |
-
If you write `<text description>#NA`, our model will determine a length. Note once there is **one** NA, all the others will be **NA** automatically.
|
98 |
-
|
99 |
-
```
|
100 |
-
python gen_t2m.py --gpu_id 1 --ext exp2 --text_path ./assets/text_prompt.txt
|
101 |
-
```
|
102 |
-
|
103 |
-
|
104 |
-
A few more parameters you may be interested:
|
105 |
-
* `--repeat_times`: number of replications for generation, default `1`.
|
106 |
-
* `--motion_length`: specify the number of poses for generation, only applicable in (a).
|
107 |
-
|
108 |
-
The output files are stored under folder `./generation/<ext>/`. They are
|
109 |
-
* `numpy files`: generated motions with shape of (nframe, 22, 3), under subfolder `./joints`.
|
110 |
-
* `video files`: stick figure animation in mp4 format, under subfolder `./animation`.
|
111 |
-
* `bvh files`: bvh files of the generated motion, under subfolder `./animation`.
|
112 |
-
|
113 |
-
We also apply naive foot ik to the generated motions, see files with suffix `_ik`. It sometimes works well, but sometimes will fail.
|
114 |
-
|
115 |
-
</details>
|
116 |
-
|
117 |
-
## :dancers: Visualization
|
118 |
-
<details>
|
119 |
-
|
120 |
-
All the animations are manually rendered in blender. We use the characters from [mixamo](https://www.mixamo.com/#/). You need to download the characters in T-Pose with skeleton.
|
121 |
-
|
122 |
-
### Retargeting
|
123 |
-
For retargeting, we found rokoko usually leads to large error on foot. On the other hand, [keemap.rig.transfer](https://github.com/nkeeline/Keemap-Blender-Rig-ReTargeting-Addon/releases) shows more precise retargetting. You could watch the [tutorial](https://www.youtube.com/watch?v=EG-VCMkVpxg) here.
|
124 |
-
|
125 |
-
Following these steps:
|
126 |
-
* Download keemap.rig.transfer from the github, and install it in blender.
|
127 |
-
* Import both the motion files (.bvh) and character files (.fbx) in blender.
|
128 |
-
* `Shift + Select` the both source and target skeleton. (Do not need to be Rest Position)
|
129 |
-
* Switch to `Pose Mode`, then unfold the `KeeMapRig` tool at the top-right corner of the view window.
|
130 |
-
* Load and read the bone mapping file `./assets/mapping.json`(or `mapping6.json` if it doesn't work). This file is manually made by us. It works for most characters in mixamo. You could make your own.
|
131 |
-
* Adjust the `Number of Samples`, `Source Rig`, `Destination Rig Name`.
|
132 |
-
* Clik `Transfer Animation from Source Destination`, wait a few seconds.
|
133 |
-
|
134 |
-
We didn't tried other retargetting tools. Welcome to comment if you find others are more useful.
|
135 |
-
|
136 |
-
### Scene
|
137 |
-
|
138 |
-
We use this [scene](https://drive.google.com/file/d/1lg62nugD7RTAIz0Q_YP2iZsxpUzzOkT1/view?usp=sharing) for animation.
|
139 |
-
|
140 |
-
|
141 |
-
</details>
|
142 |
-
|
143 |
-
## :clapper: Temporal Inpainting
|
144 |
-
<details>
|
145 |
-
We conduct mask-based editing in the m-transformer stage, followed by the regeneration of residual tokens for the entire sequence. To load your own motion, provide the path through `--source_motion`. Utilize `-msec` to specify the mask section, supporting either ratio or frame index. For instance, `-msec 0.3,0.6` with `max_motion_length=196` is equivalent to `-msec 59,118`, indicating the editing of the frame section [59, 118].
|
146 |
-
|
147 |
-
```
|
148 |
-
python edit_t2m.py --gpu_id 1 --ext exp3 --use_res_model -msec 0.4,0.7 --text_prompt "A man picks something from the ground using his right hand."
|
149 |
-
```
|
150 |
-
|
151 |
-
Note: Presently, the source motion must adhere to the format of a HumanML3D dim-263 feature vector. An example motion vector data from the HumanML3D test set is available in `example_data/000612.npy`. To process your own motion data, you can utilize the `process_file` function from `utils/motion_process.py`.
|
152 |
-
|
153 |
-
</details>
|
154 |
-
|
155 |
-
## :space_invader: Train Your Own Models
|
156 |
-
<details>
|
157 |
-
|
158 |
-
|
159 |
-
**Note**: You have to train RVQ **BEFORE** training masked/residual transformers. The latter two can be trained simultaneously.
|
160 |
-
|
161 |
-
### Train RVQ
|
162 |
-
```
|
163 |
-
python train_vq.py --name rvq_name --gpu_id 1 --dataset_name t2m --batch_size 512 --num_quantizers 6 --max_epoch 500 --quantize_drop_prob 0.2
|
164 |
-
```
|
165 |
-
|
166 |
-
### Train Masked Transformer
|
167 |
-
```
|
168 |
-
python train_t2m_transformer.py --name mtrans_name --gpu_id 2 --dataset_name t2m --batch_size 64 --vq_name rvq_name
|
169 |
-
```
|
170 |
-
|
171 |
-
### Train Residual Transformer
|
172 |
-
```
|
173 |
-
python train_res_transformer.py --name rtrans_name --gpu_id 2 --dataset_name t2m --batch_size 64 --vq_name rvq_name --cond_drop_prob 0.2 --share_weight
|
174 |
-
```
|
175 |
-
|
176 |
-
* `--dataset_name`: motion dataset, `t2m` for HumanML3D and `kit` for KIT-ML.
|
177 |
-
* `--name`: name your model. This will create to model space as `./checkpoints/<dataset_name>/<name>`
|
178 |
-
* `--gpu_id`: GPU id.
|
179 |
-
* `--batch_size`: we use `512` for rvq training. For masked/residual transformer, we use `64` on HumanML3D and `16` for KIT-ML.
|
180 |
-
* `--num_quantizers`: number of quantization layers, `6` is used in our case.
|
181 |
-
* `--quantize_drop_prob`: quantization dropout ratio, `0.2` is used.
|
182 |
-
* `--vq_name`: when training masked/residual transformer, you need to specify the name of rvq model for tokenization.
|
183 |
-
* `--cond_drop_prob`: condition drop ratio, for classifier-free guidance. `0.2` is used.
|
184 |
-
* `--share_weight`: whether to share the projection/embedding weights in residual transformer.
|
185 |
-
|
186 |
-
All the pre-trained models and intermediate results will be saved in space `./checkpoints/<dataset_name>/<name>`.
|
187 |
-
</details>
|
188 |
-
|
189 |
-
## :book: Evaluation
|
190 |
-
<details>
|
191 |
-
|
192 |
-
### Evaluate RVQ Reconstruction:
|
193 |
-
HumanML3D:
|
194 |
-
```
|
195 |
-
python eval_t2m_vq.py --gpu_id 0 --name rvq_nq6_dc512_nc512_noshare_qdp0.2 --dataset_name t2m --ext rvq_nq6
|
196 |
-
|
197 |
-
```
|
198 |
-
KIT-ML:
|
199 |
-
```
|
200 |
-
python eval_t2m_vq.py --gpu_id 0 --name rvq_nq6_dc512_nc512_noshare_qdp0.2_k --dataset_name kit --ext rvq_nq6
|
201 |
-
```
|
202 |
-
|
203 |
-
### Evaluate Text2motion Generation:
|
204 |
-
HumanML3D:
|
205 |
-
```
|
206 |
-
python eval_t2m_trans_res.py --res_name tres_nlayer8_ld384_ff1024_rvq6ns_cdp0.2_sw --dataset_name t2m --name t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns --gpu_id 1 --cond_scale 4 --time_steps 10 --ext evaluation
|
207 |
-
```
|
208 |
-
KIT-ML:
|
209 |
-
```
|
210 |
-
python eval_t2m_trans_res.py --res_name tres_nlayer8_ld384_ff1024_rvq6ns_cdp0.2_sw_k --dataset_name kit --name t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns_k --gpu_id 0 --cond_scale 2 --time_steps 10 --ext evaluation
|
211 |
-
```
|
212 |
-
|
213 |
-
* `--res_name`: model name of `residual transformer`.
|
214 |
-
* `--name`: model name of `masked transformer`.
|
215 |
-
* `--cond_scale`: scale of classifer-free guidance.
|
216 |
-
* `--time_steps`: number of iterations for inference.
|
217 |
-
* `--ext`: filename for saving evaluation results.
|
218 |
-
|
219 |
-
The final evaluation results will be saved in `./checkpoints/<dataset_name>/<name>/eval/<ext>.log`
|
220 |
-
|
221 |
-
</details>
|
222 |
-
|
223 |
-
## Acknowlegements
|
224 |
-
|
225 |
-
We sincerely thank the open-sourcing of these works where our code is based on:
|
226 |
-
|
227 |
-
[deep-motion-editing](https://github.com/DeepMotionEditing/deep-motion-editing), [Muse](https://github.com/lucidrains/muse-maskgit-pytorch), [vector-quantize-pytorch](https://github.com/lucidrains/vector-quantize-pytorch), [T2M-GPT](https://github.com/Mael-zys/T2M-GPT), [MDM](https://github.com/GuyTevet/motion-diffusion-model/tree/main) and [MLD](https://github.com/ChenFengYe/motion-latent-diffusion/tree/main)
|
228 |
-
|
229 |
-
## License
|
230 |
-
This code is distributed under an [MIT LICENSE](https://github.com/EricGuo5513/momask-codes/tree/main?tab=MIT-1-ov-file#readme).
|
231 |
-
|
232 |
-
Note that our code depends on other libraries, including SMPL, SMPL-X, PyTorch3D, and uses datasets which each have their own respective licenses that must also be followed.
|
|
|
4 |
colorFrom: pink
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.24.1
|
8 |
app_file: app.py
|
9 |
pinned: True
|
10 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|