from functools import partial import os import torch import numpy as np import gradio as gr import gdown WEBSITE = """

MoMask: Generative Masked Modeling of 3D Human Motions

Chuan Guo*Yuxuan Mu*Muhammad Gohar Javed*Sen WangLi Cheng

arXiv 2023

Description

This space illustrates MoMask, a method for text-to-motion generation.

""" EXAMPLES = [ "A person is walking slowly", "A person is walking in a circle", "A person is jumping rope", "Someone is doing a backflip", "A person is doing a moonwalk", "A person walks forward and then turns back", "Picking up an object", "A person is swimming in the sea", "A human is squatting", "Someone is jumping with one foot", "A person is chopping vegetables", "Someone walks backward", "Somebody is ascending a staircase", "A person is sitting down", "A person is taking the stairs", "Someone is doing jumping jacks", "The person walked forward and is picking up his toolbox", "The person angrily punching the air", ] # Show closest text in the training # css to make videos look nice # var(--block-border-color); TODO CSS = """ .retrieved_video { position: relative; margin: 0; box-shadow: var(--block-shadow); border-width: var(--block-border-width); border-color: #000000; border-radius: var(--block-radius); background: var(--block-background-fill); width: 100%; line-height: var(--line-sm); } } """ DEFAULT_TEXT = "A person is " def generate( text, uid, motion_length=0, seed=351540, repeat_times=4, ): os.system(f'python gen_t2m.py --gpu_id 0 --seed {seed} --ext {uid} --repeat_times {repeat_times} --motion_length {motion_length} --text_prompt {text}') datas = [] for n in repeat_times: data_unit = { "url": f"./generation/{uid}/animations/0/sample0_repeat{n}_len196_ik.mp4" } datas.append(data_unit) return datas # HTML component def get_video_html(data, video_id, width=700, height=700): url = data["url"] # class="wrap default svelte-gjihhp hide" #
# width="{width}" height="{height}" video_html = f""" """ return video_html def generate_component(generate_function, text): if text == DEFAULT_TEXT or text == "" or text is None: return [None for _ in range(4)] datas = generate_function(text, ) htmls = [get_video_html(data, idx) for idx, data in enumerate(datas)] return htmls if not os.path.exists("checkpoints/t2m"): os.system("bash prepare/download_models.sh") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # LOADING # DEMO theme = gr.themes.Default(primary_hue="blue", secondary_hue="gray") generate_and_show = partial(generate_component, generate) with gr.Blocks(css=CSS, theme=theme) as demo: gr.Markdown(WEBSITE) videos = [] with gr.Row(): with gr.Column(scale=3): with gr.Column(scale=2): text = gr.Textbox( show_label=True, label="Text prompt", value=DEFAULT_TEXT, ) with gr.Column(scale=1): gen_btn = gr.Button("Generate", variant="primary") clear = gr.Button("Clear", variant="secondary") with gr.Column(scale=2): def generate_example(text): return generate_and_show(text) examples = gr.Examples( examples=[[x, None, None] for x in EXAMPLES], inputs=[text], examples_per_page=20, run_on_click=False, cache_examples=False, fn=generate_example, outputs=[], ) i = -1 # should indent for _ in range(1): with gr.Row(): for _ in range(4): i += 1 video = gr.HTML() videos.append(video) # connect the examples to the output # a bit hacky examples.outputs = videos def load_example(example_id): processed_example = examples.non_none_processed_examples[example_id] return gr.utils.resolve_singleton(processed_example) examples.dataset.click( load_example, inputs=[examples.dataset], outputs=examples.inputs_with_examples, # type: ignore show_progress=False, postprocess=False, queue=False, ).then(fn=generate_example, inputs=examples.inputs, outputs=videos) gen_btn.click( fn=generate_and_show, inputs=[text], outputs=videos, ) text.submit( fn=generate_and_show, inputs=[text], outputs=videos, ) def clear_videos(): return [None for x in range(4)] + [DEFAULT_TEXT] clear.click(fn=clear_videos, outputs=videos + [text]) demo.launch()