SahilJ2 commited on
Commit
4a9aa83
·
verified ·
1 Parent(s): 76b6f08

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -144,23 +144,23 @@ def m4(que, image):
144
  inputs = processor3(images=image, text=que, return_tensors="pt")
145
  predictions = model3.generate(**inputs, max_new_tokens=512)
146
  return processor3.decode(predictions[0], skip_special_tokens=True)
 
147
 
148
  def m5(que, image):
149
 
150
- processor3 = AutoProcessor.from_pretrained("google/pix2struct-ocrvqa-large")
151
- model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-ocrvqa-large")
152
 
153
- inputs = processor3(images=image, text=que, return_tensors="pt")
154
 
 
155
  predictions = model3.generate(**inputs)
156
  return processor3.decode(predictions[0], skip_special_tokens=True)
157
 
158
  def m6(que, image):
159
- processor3 = AutoProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
160
- model3 = AutoModelForSeq2SeqLM.from_pretrained("google/pix2struct-infographics-vqa-large")
161
-
162
  inputs = processor3(images=image, text=que, return_tensors="pt")
163
-
164
  predictions = model3.generate(**inputs)
165
  return processor3.decode(predictions[0], skip_special_tokens=True)
166
 
 
144
  inputs = processor3(images=image, text=que, return_tensors="pt")
145
  predictions = model3.generate(**inputs, max_new_tokens=512)
146
  return processor3.decode(predictions[0], skip_special_tokens=True)
147
+
148
 
149
  def m5(que, image):
150
 
151
+ model3 = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-ocrvqa-large")
152
+ processor3 = Pix2StructProcessor.from_pretrained("google/pix2struct-ocrvqa-large")
153
 
 
154
 
155
+ inputs = processor3(images=image, text=que, return_tensors="pt")
156
  predictions = model3.generate(**inputs)
157
  return processor3.decode(predictions[0], skip_special_tokens=True)
158
 
159
  def m6(que, image):
160
+ model3 = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-infographics-vqa-large")
161
+ processor3 = Pix2StructProcessor.from_pretrained("google/pix2struct-infographics-vqa-large")
162
+
163
  inputs = processor3(images=image, text=que, return_tensors="pt")
 
164
  predictions = model3.generate(**inputs)
165
  return processor3.decode(predictions[0], skip_special_tokens=True)
166