Mediocreatmybest's picture
Update app.py
b0b220f
import torch
import gradio as gr
from transformers import pipeline
import ast
CAPTION_MODELS = {
'blip-base': 'Salesforce/blip-image-captioning-base',
'blip-large': 'Salesforce/blip-image-captioning-large',
'vit-gpt2-coco-en': 'ydshieh/vit-gpt2-coco-en',
'blip2-2.7b_8bit': 'Mediocreatmybest/blip2-opt-2.7b_8bit',
'blip2-2.7b-fp16': 'Mediocreatmybest/blip2-opt-2.7b-fp16-sharded',
}
# Create a dictionary to store loaded models
loaded_models = {}
# Simple caption creation
def caption_image(model_choice, image_input, url_inputs, load_in_8bit, device):
if image_input is not None:
input_data = [image_input]
else:
input_data = ast.literal_eval(url_inputs) # interpret the input string as a list
captions = []
model_key = (model_choice, load_in_8bit) # Create a tuple to represent the unique combination of model and 8bit loading
# Check if the model is already loaded
if model_key in loaded_models:
captioner = loaded_models[model_key]
else:
model_kwargs = {"load_in_8bit": load_in_8bit} if load_in_8bit else {}
dtype = torch.float16 if load_in_8bit else torch.float32 # Set dtype based on the value of load_in_8bit
captioner = pipeline(task="image-to-text",
model=CAPTION_MODELS[model_choice],
max_new_tokens=30,
device=device, # Use selected device
model_kwargs=model_kwargs,
torch_dtype=dtype, # Set the floating point
use_fast=True
)
# Store the loaded model
loaded_models[model_key] = captioner
for input_item in input_data:
caption = captioner(input_item)[0]['generated_text']
captions.append(str(caption).strip())
return captions
def launch(model_choice, image_input, url_inputs, load_in_8bit, device):
return caption_image(model_choice, image_input, url_inputs, load_in_8bit, device)
model_dropdown = gr.Dropdown(choices=list(CAPTION_MODELS.keys()), label='Select Caption Model')
image_input = gr.Image(type="pil", label="Input Image", multiple=True) # Enable multiple inputs
url_inputs = gr.Textbox(label="Input URLs", description="Enter URLs in a list format, e.g., ['url1', 'url2', 'url3']")
load_in_8bit = gr.Checkbox(label="Load model in 8bit")
device = gr.Radio(['cpu', 'cuda'], label='Select device', default='cpu')
iface = gr.Interface(launch, inputs=[model_dropdown, image_input, url_inputs, load_in_8bit, device],
outputs=gr.outputs.Textbox(type="text", label="Caption"))
iface.launch()