Upload 2 files
Browse files- app.py +89 -0
- vehicle_classifier.pth +3 -0
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from PIL import Image
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
transform_test = transforms.Compose([
|
9 |
+
transforms.Resize(256),
|
10 |
+
transforms.CenterCrop(224),
|
11 |
+
transforms.ToTensor(),
|
12 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
13 |
+
])
|
14 |
+
|
15 |
+
class_names = [
|
16 |
+
'Auto Rickshaws', 'Bikes', 'Cars', 'Motorcycles',
|
17 |
+
'Planes', 'Ships', 'Trains'
|
18 |
+
]
|
19 |
+
class VehicleClassifier(nn.Module):
|
20 |
+
def __init__(self):
|
21 |
+
super(VehicleClassifier, self).__init__()
|
22 |
+
|
23 |
+
# Convolutional Layers
|
24 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
|
25 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
26 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
|
27 |
+
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
|
28 |
+
|
29 |
+
# Pooling Layer
|
30 |
+
self.pool = nn.MaxPool2d(2, 2)
|
31 |
+
|
32 |
+
# FC Layers
|
33 |
+
self.fc1 = nn.Linear(256 * 14 * 14, 512)
|
34 |
+
self.fc2 = nn.Linear(512, 256)
|
35 |
+
self.fc3 = nn.Linear(256, 7) # 7 classes for the 7 vehicle categories
|
36 |
+
|
37 |
+
self.dropout = nn.Dropout(0.5)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
# Apply Convolutional Layers with ReLU activation and Pooling
|
41 |
+
x = self.pool(F.relu(self.conv1(x)))
|
42 |
+
x = self.pool(F.relu(self.conv2(x)))
|
43 |
+
x = self.pool(F.relu(self.conv3(x)))
|
44 |
+
x = self.pool(F.relu(self.conv4(x)))
|
45 |
+
|
46 |
+
# Flatten the tensor before feeding into the FCL
|
47 |
+
x = x.view(-1, 256 * 14 * 14)
|
48 |
+
x = F.relu(self.fc1(x))
|
49 |
+
x = self.dropout(x)
|
50 |
+
x = F.relu(self.fc2(x))
|
51 |
+
x = self.dropout(x)
|
52 |
+
x = self.fc3(x)
|
53 |
+
return x
|
54 |
+
model = VehicleClassifier().to('cpu')
|
55 |
+
model.load_state_dict(torch.load('vehicle_classifier.pth', map_location=torch.device('cpu')))
|
56 |
+
model.eval()
|
57 |
+
|
58 |
+
def predict(image):
|
59 |
+
try:
|
60 |
+
image = Image.open(image).convert('RGB')
|
61 |
+
image = transform_test(image).unsqueeze(0) # Add batch dimension
|
62 |
+
|
63 |
+
print(f"Image shape after transformation: {image.shape}")
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
outputs = model(image)
|
67 |
+
print(f"Model output: {outputs}")
|
68 |
+
_, predicted = torch.max(outputs, 1)
|
69 |
+
|
70 |
+
prediction = class_names[predicted.item()]
|
71 |
+
print(f"Predicted class: {prediction}")
|
72 |
+
|
73 |
+
return prediction
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error during prediction: {e}")
|
76 |
+
traceback.print_exc()
|
77 |
+
return "An error occurred during prediction."
|
78 |
+
|
79 |
+
|
80 |
+
interface = gr.Interface(
|
81 |
+
fn=predict,
|
82 |
+
inputs=gr.Image(type='filepath'),
|
83 |
+
outputs=gr.Label(num_top_classes=1),
|
84 |
+
title="Vehicle Classification",
|
85 |
+
description="Upload an image of a vehicle, and the model will predict its type."
|
86 |
+
)
|
87 |
+
|
88 |
+
# Launch the interface
|
89 |
+
interface.launch(share=True)
|
vehicle_classifier.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0ed7dbfc5083a96209bad40a0eb4e7889505456a0ffcb999406fff96e14c68d
|
3 |
+
size 104853810
|