Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.py
|
3 |
+
Automatically generated by Colaboratory.
|
4 |
+
Original file is located at
|
5 |
+
https://colab.research.google.com/drive/1sjpiZeNESzMVcNpywmkNPS6Wwu6pTfrE
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import os
|
10 |
+
import gradio as gr
|
11 |
+
from transformers import pipeline
|
12 |
+
from pytube import YouTube
|
13 |
+
from datasets import Dataset, Audio
|
14 |
+
from moviepy.editor import AudioFileClip
|
15 |
+
|
16 |
+
pipe = pipeline(model="Qinglinz/whisper-small-hi")
|
17 |
+
|
18 |
+
def download_from_youtube(url):
|
19 |
+
"""
|
20 |
+
Downloads the video from the given YouTube URL and returns the path to the audio file.
|
21 |
+
"""
|
22 |
+
streams = YouTube(url).streams.filter(only_audio=True, file_extension='mp4')
|
23 |
+
fpath = streams.first().download()
|
24 |
+
return fpath
|
25 |
+
|
26 |
+
def get_timestamp(seconds):
|
27 |
+
"""
|
28 |
+
Creates %M:%S timestamp from seconds.
|
29 |
+
"""
|
30 |
+
minutes = int(seconds / 60)
|
31 |
+
seconds = int(seconds % 60)
|
32 |
+
return f"{str(minutes).zfill(2)}:{str(seconds).zfill(2)}"
|
33 |
+
|
34 |
+
def divide_into_30s_segments(audio_fpath, seconds_max):
|
35 |
+
"""
|
36 |
+
Divides the audio file into 30s segments and returns the paths to the segments and the start times of the segments.
|
37 |
+
:param audio_fpath: Path to the audio file.
|
38 |
+
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
|
39 |
+
"""
|
40 |
+
if not os.path.exists("segmented_audios"):
|
41 |
+
os.makedirs("segmented_audios")
|
42 |
+
|
43 |
+
sound = AudioFileClip(audio_fpath)
|
44 |
+
n_full_segments = int(sound.duration / 30)
|
45 |
+
len_last_segment = sound.duration % 30
|
46 |
+
|
47 |
+
max_segments = int(seconds_max / 30)
|
48 |
+
if n_full_segments > max_segments:
|
49 |
+
n_full_segments = max_segments
|
50 |
+
len_last_segment = 0
|
51 |
+
|
52 |
+
segment_paths = []
|
53 |
+
segment_start_times = []
|
54 |
+
|
55 |
+
segments_available = n_full_segments + 1
|
56 |
+
for i in range(min(segments_available, max_segments)):
|
57 |
+
start = i * 30
|
58 |
+
|
59 |
+
# Skip last segment if it is smaller than two seconds
|
60 |
+
is_last_segment = i == n_full_segments
|
61 |
+
if is_last_segment and not len_last_segment > 2:
|
62 |
+
continue
|
63 |
+
elif is_last_segment:
|
64 |
+
end = start + len_last_segment
|
65 |
+
else:
|
66 |
+
end = (i + 1) * 30
|
67 |
+
|
68 |
+
segment_path = os.path.join("segmented_audios", f"segment_{i}.wav")
|
69 |
+
segment = sound.subclip(start, end)
|
70 |
+
segment.write_audiofile(segment_path)
|
71 |
+
segment_paths.append(segment_path)
|
72 |
+
segment_start_times.append(start)
|
73 |
+
|
74 |
+
return segment_paths, segment_start_times
|
75 |
+
def get_translation(text):
|
76 |
+
"""
|
77 |
+
Translates the given Chinese text to English.
|
78 |
+
"""
|
79 |
+
return "TODO: Make API call to Google Translate to get English translation"
|
80 |
+
|
81 |
+
def transcribe(audio, url, seconds_max):
|
82 |
+
"""
|
83 |
+
Transcribes a YouTube video if a url is specified and returns the transcription.
|
84 |
+
If not url is specified, it transcribes the audio file as passed by Gradio.
|
85 |
+
:param audio: Audio file as passed by Gradio. Only used if no url is specified.
|
86 |
+
:param url: YouTube URL to transcribe.
|
87 |
+
:param seconds_max: Maximum number of seconds to consider. If the audio file is longer than this, it will be truncated.
|
88 |
+
"""
|
89 |
+
if url:
|
90 |
+
fpath = download_from_youtube(url)
|
91 |
+
segment_paths, segment_start_times = divide_into_30s_segments(fpath, seconds_max)
|
92 |
+
|
93 |
+
audio_dataset = Dataset.from_dict({"audio": segment_paths}).cast_column("audio", Audio(sampling_rate=16000))
|
94 |
+
pred = pipe(audio_dataset["audio"])
|
95 |
+
text = ""
|
96 |
+
n_segments = len(segment_start_times)
|
97 |
+
for i, (seconds, output) in enumerate(zip(segment_start_times, pred)):
|
98 |
+
text += f"[Segment {i+1}/{n_segments}, start time {get_timestamp(seconds)}]\n"
|
99 |
+
text += f"{output['text']}\n"
|
100 |
+
text += f"[Translation]\n{get_translation(output['text'])}\n\n"
|
101 |
+
return text
|
102 |
+
|
103 |
+
else:
|
104 |
+
text = pipe(audio)["text"]
|
105 |
+
return text
|
106 |
+
|
107 |
+
block = gr.Interface(
|
108 |
+
fn=transcribe,
|
109 |
+
inputs=[
|
110 |
+
gr.Audio(source="microphone", type="filepath", label="Transcribe from Microphone"),
|
111 |
+
gr.Text(max_lines=1, placeholder="Enter YouTube Link which has a Swedish video", label="Transcribe from YouTube URL"),
|
112 |
+
gr.Slider(minimum=30, maximum=300, value=30, step=30, label="Number of seconds to transcribe from YouTube URL")
|
113 |
+
],
|
114 |
+
outputs="text",
|
115 |
+
title="Whisper Small Swedish",
|
116 |
+
description="Realtime Swedish speech recognition",
|
117 |
+
)
|
118 |
+
|
119 |
+
block.launch()
|