import os import sys sys.path.append("./") import torch from torchvision import transforms from src.transformer import Transformer2DModel from src.pipeline import Pipeline from src.scheduler import Scheduler from transformers import ( CLIPTextModelWithProjection, CLIPTokenizer, ) from diffusers import VQModel import gradio as gr import spaces device = 'cuda' if torch.cuda.is_available() else 'cpu' dtype = torch.bfloat16 model_path = "MeissonFlow/Meissonic" model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype) vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype) # text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path,subfolder="text_encoder", torch_dtype=dtype) text_encoder = CLIPTextModelWithProjection.from_pretrained( #using original text enc for stable sampling "laion/CLIP-ViT-H-14-laion2B-s32B-b79K",torch_dtype=dtype) tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype) scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler") pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler) pipe.to(device) MAX_SEED = 2**32 - 1 MAX_IMAGE_SIZE = 1024 @spaces.GPU def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): if randomize_seed or seed == 0: seed = torch.randint(0, MAX_SEED, (1,)).item() torch.manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps ).images[0] return image, seed # Default negative prompt default_negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark" css = """ #col-container { margin: 0 auto; max-width: 640px; } """ examples = [ "Modern Architecture render with pleasing aesthetics.", "An image of a Pikachu wearing a birthday hat and playing guitar.", "A statue of a lion stands in front of a building.", "A white and blue coffee mug with a picture of a man on it.", "A metal sculpture of a deer with antlers.", "A bronze statue of an owl with its wings spread.", "A white table with a vase of flowers and a cup of coffee on top of it.", "A woman stands on a dock in the fog.", "A lion's head is shown in a grayscale image.", "A sculpture of a Greek woman head with a headband and a head of hair." ] with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Meissonic Text-to-Image Generator") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value=default_negative_prompt, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=9.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=64, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=generate_image, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) demo.launch()