from typing import Optional import nbformat as nbf from utils import FTDataSet, falcon, gemma def create_install_libraries_cells(cells: list): text_cell = nbf.v4.new_markdown_cell("# Installing Required Libraries!") text_cell1 = nbf.v4.new_markdown_cell( "Installing required libraries, including trl, transformers, accelerate, peft, datasets, " "and bitsandbytes.") code = """ !pip install -q --upgrade "transformers==4.38.2" !pip install -q --upgrade "datasets==2.16.1" !pip install -q --upgrade "accelerate==0.26.1" !pip install -q --upgrade "evaluate==0.4.1" !pip install -q --upgrade "bitsandbytes==0.42.0" !pip install -q --upgrade "trl==0.7.11" !pip install -q --upgrade "peft==0.8.2" """ code_pytorch = """ # Checks if PyTorch is installed and installs it if not. try: import torch print("PyTorch is installed!") except ImportError: print("PyTorch is not installed.") !pip install -q torch """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(text_cell1) cells.append(nbf.v4.new_code_cell(code_pytorch)) cells.append(code_cell) def create_install_flash_attention(cells: list): text_cell = nbf.v4.new_markdown_cell( "## Installing Flash Attention") text_cell1 = nbf.v4.new_markdown_cell("Installing Flash Attention to reduce the memory " "and runtime cost of the attention layer, and improve the performance of " "the model training. Learn more at [FlashAttention](" "https://github.com/Dao-AILab/flash-attention/tree/main)." " Installing flash " "attention from source can take quite a bit of time (~ " "minutes).") code = """ import torch; assert torch.cuda.get_device_capability()[0] >= 8, 'Hardware not supported for Flash Attention' !pip install ninja packaging !MAX_JOBS=4 pip install -q flash-attn --no-build-isolation --upgrade """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(text_cell1) cells.append(code_cell) def create_login_hf_cells(cells: list, should_login: bool = False, model_name: Optional[str] = None, output_dir: Optional[str] = None): text_cell = nbf.v4.new_markdown_cell("## Login to HF") text_1 = f"Replace `HF_TOKEN` with a valid token in order to push **'{output_dir}'** to `huggingface_hub`." if should_login: text_1 = f"Replace `HF_TOKEN` with a valid token in order to load **'{model_name}'** from `huggingface_hub`." text_cell1 = nbf.v4.new_markdown_cell(text_1) code = """ # Install huggingface_hub !pip install -q huggingface_hub from huggingface_hub import login login( token='HF_TOKEN', add_to_git_credential=True ) """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(text_cell1) cells.append(code_cell) def create_datasets_cells(cells: list, dataset: FTDataSet, seed: int): text_cell = nbf.v4.new_markdown_cell("# Load and Prepare the Dataset") text = 'The dataset is already formatted in a conversational format, which is supported by [trl](' \ 'https://huggingface.co/docs/trl/index/), and ready for supervised finetuning.' text_format = """ **Conversational format:** ```python {"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]} {"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]} {"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]} ``` """ text_cell1 = nbf.v4.new_markdown_cell(text) text_cell2 = nbf.v4.new_markdown_cell(text_format) code = f""" from datasets import load_dataset # Load dataset from the hub dataset = load_dataset("{dataset.path}", split="{dataset.dataset_split}") dataset = dataset.shuffle(seed={seed}) """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(text_cell1) cells.append(text_cell2) cells.append(code_cell) def create_model_cells(cells: list, model_id: str, version: str, flash_attention: bool, pad_side: str, pad_value: str, load_in_4bit: str, bnb_4bit_use_double_quant: bool, bnb_4bit_quant_type: str, bnb_4bit_compute_dtype: str ): text_cell = nbf.v4.new_markdown_cell(f"# Load **{model_id}-{version}** for Finetuning") load_in_4bit_str = f"{load_in_4bit}=True" flash_attention_str = "attn_implementation='flash_attention_2'," if not flash_attention: flash_attention_str = '' pad_value_str = "tokenizer.pad_token = tokenizer.eos_token" if pad_value is None: pad_value_str = "" auto_model_import = "AutoModelForCausalLM" trust_code = "trust_remote_code=True," if model_id == falcon.name: auto_model_import = "FalconForCausalLM" trust_code = "" chat_ml = """ # Set chat template to OAI chatML model, tokenizer = setup_chat_format(model, tokenizer) """ note = f""" > **Note:** For `{model_id}`, we will not use `setup_chat_format`. Instead, we will directly use this tokenizer, [philschmid/gemma-tokenizer-chatml](https://huggingface.co/philschmid/gemma-tokenizer-chatml), to fine-tune `{model_id}` with ChatML. """ tokenizer_id = f"{model_id}-{version}" if model_id == gemma.name: tokenizer_id = "philschmid/gemma-tokenizer-chatml" chat_ml ="" else: note = "" code = f""" import torch from transformers import AutoTokenizer, {auto_model_import}, BitsAndBytesConfig from trl import setup_chat_format # Hugging Face model id model_id = "{model_id}-{version}" # BitsAndBytesConfig bnb_config = BitsAndBytesConfig( {load_in_4bit_str}, bnb_4bit_use_double_quant={bnb_4bit_use_double_quant}, bnb_4bit_quant_type="{bnb_4bit_quant_type}", bnb_4bit_compute_dtype={bnb_4bit_compute_dtype} ) # Load model and tokenizer model = {auto_model_import}.from_pretrained( model_id, device_map="auto", {trust_code} {flash_attention_str} torch_dtype=torch.bfloat16, quantization_config=bnb_config ) tokenizer = AutoTokenizer.from_pretrained("{tokenizer_id}") tokenizer.padding_side = "{pad_side}" {pad_value_str} {chat_ml} """ text_1 = f""" This process involves two key steps: 1. **LLM Quantization:** - We first load the selected large language model (LLM). - We then use the `bitsandbytes` library to quantize the model, which can significantly reduce its memory footprint. > **Note:** The memory requirements of the model scale with its size. For instance, a 7B parameter model may require a 24GB GPU for fine-tuning. 2. **Chat Model Preparation:** - To train a model for chat/conversational tasks, we need to prepare both the model and its tokenizer. - This involves adding special tokens to the tokenizer and the model itself. These tokens help the model understand the different roles within a conversation. - The **trl** provides a convenient method called `setup_chat_format` for this purpose. This method performs the following actions: * Adds special tokens to the tokenizer, such as `<|im_start|>` and `<|im_end|>`, to mark the beginning and ending of a conversation. * Resizes the model's embedding layer to accommodate the new tokens. * Sets the tokenizer's chat template, which defines the format used to convert input data into a chat-like structure. The default template is `chatml` from OpenAI. {note} """ code_cell = nbf.v4.new_code_cell(code) text_cell1 = nbf.v4.new_markdown_cell(text_1) cells.append(text_cell) cells.append(text_cell1) cells.append(code_cell) def create_lora_config_cells(cells: list, r: int, alpha: int, dropout: float, bias: str): text_cell = nbf.v4.new_markdown_cell("## Setting LoRA Config") code = f""" from peft import LoraConfig peft_config = LoraConfig( lora_alpha={alpha}, lora_dropout={dropout}, r={r}, bias="{bias}", target_modules="all-linear", task_type="CAUSAL_LM" ) """ text = """The `SFTTrainer` provides native integration with `peft`, simplifying the process of efficiently tuning Language Models (LLMs) using techniques such as [LoRA]( https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms). The only requirement is to create the `LoraConfig` and pass it to the `SFTTrainer`. """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(nbf.v4.new_markdown_cell(text)) cells.append(code_cell) def create_training_args_cells(cells: list, epochs, max_steps, logging_steps, per_device_train_batch_size, save_strategy, gradient_accumulation_steps, gradient_checkpointing, learning_rate, max_grad_norm, warmup_ratio, lr_scheduler_type, output_dir, report_to, seed): text_cell = nbf.v4.new_markdown_cell("## Setting the TrainingArguments") to_install = None if report_to == "all": to_install = "azure_ml comet_ml mlflow tensorboard wandb" elif report_to != "none": to_install = report_to gradient_checkpointing_kwargs = {"use_reentrant": False} code_report = f""" # Installing {to_install} to report the metrics !pip install -q {to_install} """ code = f""" from transformers import TrainingArguments args = TrainingArguments( output_dir="temp_{output_dir}", num_train_epochs={epochs}, per_device_train_batch_size={per_device_train_batch_size}, gradient_accumulation_steps={gradient_accumulation_steps}, gradient_checkpointing={gradient_checkpointing}, gradient_checkpointing_kwargs={gradient_checkpointing_kwargs}, optim="adamw_torch_fused", logging_steps={logging_steps}, save_strategy='{save_strategy}', learning_rate={learning_rate}, bf16=True, max_grad_norm={max_grad_norm}, warmup_ratio={warmup_ratio}, lr_scheduler_type='{lr_scheduler_type}', report_to='{report_to}', max_steps={max_steps}, seed={seed}, overwrite_output_dir=True, remove_unused_columns=True ) """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) if to_install is not None: cells.append(nbf.v4.new_code_cell(code_report)) cells.append(code_cell) def create_sft_trainer_cells(cells: list, max_seq_length, packing): text_cell = nbf.v4.new_markdown_cell( """## Setting the Supervised Finetuning Trainer (`SFTTrainer`) This `SFTTrainer` is a wrapper around the `transformers.Trainer` class and inherits all of its attributes and methods. The trainer takes care of properly initializing the `PeftModel`. """) dataset_kwargs = { "add_special_tokens": False, # We template with special tokens "append_concat_token": False, # No need to add additional separator token } code = f""" from trl import SFTTrainer trainer = SFTTrainer( model=model, args=args, train_dataset=dataset, peft_config=peft_config, max_seq_length={max_seq_length}, tokenizer=tokenizer, packing={packing}, dataset_kwargs={dataset_kwargs} ) """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(code_cell) def create_start_training_cells(cells: list, epochs, max_steps, push_to_hub, output_dir): if push_to_hub: save_txt = f"and to the hub in **'User/{output_dir}'**." else: save_txt = "." epoch_str = f"{epochs} epochs" if max_steps > 0: epoch_str = f"{max_steps} steps" text_cell = nbf.v4.new_markdown_cell( f"""### Starting Training and Saving Model/Tokenizer We start training the model by calling the `train()` method on the trainer instance. This will start the training loop and train the model for `{epoch_str}`. The model will be automatically saved to the output directory (**'temp_{output_dir}'**) {save_txt} """) code = f""" model.config.use_cache = False # start training trainer.train() # save the peft model trainer.save_model() """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(code_cell) def create_free_gpu_cells(cells: list): text_cell = nbf.v4.new_markdown_cell( """### Free the GPU Memory to Prepare Merging `LoRA` Adapters with the Base Model """) code = f""" # Free the GPU memory del model del trainer torch.cuda.empty_cache() """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(code_cell) def create_merge_lora_cells(cells: list, output_dir): text_cell = nbf.v4.new_markdown_cell( """## Merging LoRA Adapters into the Original Model While utilizing `LoRA`, we focus on training the adapters rather than the entire model. Consequently, during the model saving process, only the `adapter weights` are preserved, not the complete model. If we wish to save the entire model for easier usage with Text Generation Inference, we can incorporate the adapter weights into the model weights. This can be achieved using the `merge_and_unload` method. Following this, the model can be saved using the `save_pretrained` method. The result is a default model that is ready for inference. """) code = f""" import torch from peft import AutoPeftModelForCausalLM # Load Peft model on CPU model = AutoPeftModelForCausalLM.from_pretrained( "temp_{output_dir}", torch_dtype=torch.float16, low_cpu_mem_usage=True ) # Merge LoRA with the base model and save merged_model = model.merge_and_unload() merged_model.save_pretrained("{output_dir}", safe_serialization=True, max_shard_size="2GB") tokenizer.save_pretrained("{output_dir}") """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(code_cell) def merge_model_cells(cells: list, output_dir): text_cell = nbf.v4.new_markdown_cell( f"### Copy all result folders from 'temp_{output_dir}' to '{output_dir}'") code = f""" import os import shutil source_folder = "temp_{output_dir}" destination_folder = "{output_dir}" os.makedirs(destination_folder, exist_ok=True) for item in os.listdir(source_folder): item_path = os.path.join(source_folder, item) if os.path.isdir(item_path): destination_path = os.path.join(destination_folder, item) shutil.copytree(item_path, destination_path) """ code_cell = nbf.v4.new_code_cell(code) cells.append(text_cell) cells.append(code_cell) def push_to_hub_cells(cells: list, output_dir): text = f"## Pushing '{output_dir}' to the Hugging Face account." code = f""" from huggingface_hub import HfApi, HfFolder, Repository # Instantiate the HfApi class api = HfApi() # Our Hugging Face repository repo_name = "{output_dir}" # Create a repository on the Hugging Face Hub repo = api.create_repo(token=HfFolder.get_token(), repo_type="model", repo_id=repo_name) api.upload_folder( folder_path="{output_dir}", repo_id=repo.repo_id ) """ code_cell = nbf.v4.new_code_cell(code) cells.append(nbf.v4.new_markdown_cell(text)) cells.append(code_cell)