Spaces:
Menyu
/
Running on Zero

Menyu commited on
Commit
77414f0
·
verified ·
1 Parent(s): b584574

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -48
app.py CHANGED
@@ -3,30 +3,24 @@ import gradio as gr
3
  import numpy as np
4
  import spaces
5
  import torch
6
- from diffusers import StableDiffusionXLPipeline, AutoencoderKL # , EulerDiscreteScheduler
7
-
8
- # 添加导入语句
9
- from sd_embed.embedding_funcs import get_weighted_text_embeddings_sdxl
10
 
11
  if not torch.cuda.is_available():
12
- DESCRIPTION += "\n<p>你现在运行在CPU上,但是该程序仅支持GPU。</p>"
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
  MAX_IMAGE_SIZE = 4096
16
 
17
  if torch.cuda.is_available():
18
- vae = AutoencoderKL.from_pretrained(
19
- "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
20
- )
21
- pipe = StableDiffusionXLPipeline.from_pretrained(
22
  "John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl",
23
  vae=vae,
24
  torch_dtype=torch.float16,
25
  use_safetensors=True,
26
- add_watermarker=False,
27
  )
28
- # pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
29
- # pipe.tokenizer.model_max_length = 512
30
  pipe.to("cuda")
31
 
32
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
@@ -38,7 +32,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
38
  def infer(
39
  prompt: str,
40
  negative_prompt: str = "",
41
- use_negative_prompt: bool = True,
42
  seed: int = 1,
43
  width: int = 512,
44
  height: int = 768,
@@ -50,40 +44,15 @@ def infer(
50
  ):
51
  seed = int(randomize_seed_fn(seed, randomize_seed))
52
  generator = torch.Generator().manual_seed(seed)
53
-
54
- # 使用 get_weighted_text_embeddings_sdxl 获取文本嵌入,不传递 device 参数
55
- if use_negative_prompt and negative_prompt:
56
- (
57
- prompt_embeds,
58
- prompt_neg_embeds,
59
- pooled_prompt_embeds,
60
- negative_pooled_prompt_embeds,
61
- ) = get_weighted_text_embeddings_sdxl(
62
- pipe,
63
- prompt=prompt,
64
- neg_prompt=negative_prompt,
65
- )
66
- else:
67
- (
68
- prompt_embeds,
69
- _,
70
- pooled_prompt_embeds,
71
- _,
72
- ) = get_weighted_text_embeddings_sdxl(
73
- pipe,
74
- prompt=prompt,
75
- )
76
- prompt_neg_embeds = None
77
- negative_pooled_prompt_embeds = None
78
-
79
  image = pipe(
80
- prompt_embeds=prompt_embeds,
81
- negative_prompt_embeds=prompt_neg_embeds,
82
  width=width,
83
  height=height,
84
  guidance_scale=guidance_scale,
85
  num_inference_steps=num_inference_steps,
86
  generator=generator,
 
87
  ).images[0]
88
  return image, seed
89
 
@@ -93,13 +62,13 @@ examples = [
93
  ]
94
 
95
  css = '''
96
- .gradio-container{max-width: 560px !important}
97
- h1{text-align:center}
98
- footer {
99
- visibility: hidden
100
- }
101
  '''
102
-
103
  with gr.Blocks(css=css) as demo:
104
  gr.Markdown("""# 梦羽的模型生成器
105
  ### 快速生成NoobXL的模型图片.""")
@@ -171,7 +140,7 @@ with gr.Blocks(css=css) as demo:
171
  )
172
 
173
  gr.on(
174
- triggers=[prompt.submit, run_button.click],
175
  fn=infer,
176
  inputs=[
177
  prompt,
 
3
  import numpy as np
4
  import spaces
5
  import torch
6
+ from diffusers import AutoPipelineForText2Image, AutoencoderKL #,EulerDiscreteScheduler
 
 
 
7
 
8
  if not torch.cuda.is_available():
9
+ DESCRIPTION += "\n<p>你现在运行在CPU上 但是只支持GPU.</p>"
10
 
11
  MAX_SEED = np.iinfo(np.int32).max
12
  MAX_IMAGE_SIZE = 4096
13
 
14
  if torch.cuda.is_available():
15
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
16
+ pipe = AutoPipelineForText2Image.from_pretrained(
 
 
17
  "John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl",
18
  vae=vae,
19
  torch_dtype=torch.float16,
20
  use_safetensors=True,
21
+ add_watermarker=False
22
  )
23
+ #pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
 
24
  pipe.to("cuda")
25
 
26
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
 
32
  def infer(
33
  prompt: str,
34
  negative_prompt: str = "",
35
+ use_negative_prompt: bool = False,
36
  seed: int = 1,
37
  width: int = 512,
38
  height: int = 768,
 
44
  ):
45
  seed = int(randomize_seed_fn(seed, randomize_seed))
46
  generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  image = pipe(
48
+ prompt=prompt,
49
+ negative_prompt=negative_prompt,
50
  width=width,
51
  height=height,
52
  guidance_scale=guidance_scale,
53
  num_inference_steps=num_inference_steps,
54
  generator=generator,
55
+ use_resolution_binning=use_resolution_binning,
56
  ).images[0]
57
  return image, seed
58
 
 
62
  ]
63
 
64
  css = '''
65
+ .gradio-container{max-width: 560px !important}
66
+ h1{text-align:center}
67
+ footer {
68
+ visibility: hidden
69
+ }
70
  '''
71
+
72
  with gr.Blocks(css=css) as demo:
73
  gr.Markdown("""# 梦羽的模型生成器
74
  ### 快速生成NoobXL的模型图片.""")
 
140
  )
141
 
142
  gr.on(
143
+ triggers=[prompt.submit,run_button.click],
144
  fn=infer,
145
  inputs=[
146
  prompt,