import gradio as gr from transformers import pipeline from PIL import Image trans=pipeline("automatic-speech-recognition",model="facebook/wav2vec2-large-xlsr-53-spanish") sentiment_cla=pipeline("text-classification",model="pysentimiento/robertuito-sentiment-analysis") image_cla=pipeline("image-classification", model="microsoft/swin-tiny-patch4-window7-224") def audio2text(audio): text = trans(audio)["text"] return text def text2sentiment(text): return sentiment_cla(text)[0]["label"] def classify_img(im): im = Image.fromarray(im.astype('uint8'), 'RGB') ans = image_cla(im) labels = {v["label"]: v["score"] for v in ans} return labels demo=gr.Blocks() with demo: gr.Markdown(""" Este 'Space' permite la inferencia de los siguientes modelos de IA de tipo open-source: - Voice2Text (en Español): [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-spanish) - Sentiment Analysis (en Español): [Robertuito](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) - Image Classifier: [Swin-small-patch4](https://huggingface.co/microsoft/swin-small-patch4-window7-224) Autor del demo: [ΜΕΤΑΝΘΡΩΠΙΑ](https://www.instagram.com/metantropia.jpg) """) with gr.Tabs(): with gr.TabItem("Audio a Texto"): with gr.Row(): audio=gr.Audio(sources="microphone",type="filepath") transcripcion=gr.Textbox() b1=gr.Button("Transcribe") with gr.TabItem("Analisis de Sentimiento"): with gr.Row(): text=gr.Textbox() label=gr.Label() b2=gr.Button("Sentimiento") with gr.TabItem("Clasificación de Imágenes"): with gr.Row(): image = gr.Image(label="Carga una Imagen") label_image = gr.Label(num_top_classes=5) b3 = gr.Button("Clasifica") b1.click(audio2text,inputs=audio,outputs=transcripcion) b2.click(text2sentiment,inputs=text,outputs=label) b3.click(classify_img, inputs=image, outputs=label_image) demo.launch()