Upload 3 files
Browse files- app.py +43 -0
- catdogmodel.h5 +3 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow.keras.preprocessing import image
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import tensorflow as tf
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
@st.cache_resource
|
9 |
+
def load_model():
|
10 |
+
model = tf.keras.models.load_model('catdogmodel.h5') # Path to your model
|
11 |
+
return model
|
12 |
+
|
13 |
+
model = load_model()
|
14 |
+
|
15 |
+
# Title
|
16 |
+
st.title("π±πΆ Cat vs. Dog Classifier")
|
17 |
+
|
18 |
+
# Image Upload
|
19 |
+
st.header("Upload an Image")
|
20 |
+
uploaded_file = st.file_uploader("Please upload a cat or dog image...", type=["jpg", "jpeg", "png"])
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
# Open and display the image
|
24 |
+
img = Image.open(uploaded_file)
|
25 |
+
st.image(img, caption='Uploaded Image', use_column_width=True)
|
26 |
+
st.write("π **Analyzing the image...**")
|
27 |
+
|
28 |
+
# Preprocess the image
|
29 |
+
img = img.resize((128, 128))
|
30 |
+
img_array = image.img_to_array(img)
|
31 |
+
img_array = np.expand_dims(img_array, axis=0)
|
32 |
+
img_array /= 255.0
|
33 |
+
|
34 |
+
# Predict
|
35 |
+
prediction = model.predict(img_array)
|
36 |
+
|
37 |
+
# Display the result
|
38 |
+
if prediction < 0.5:
|
39 |
+
st.write("πΆ **It's a Dog!**")
|
40 |
+
else:
|
41 |
+
st.write("π± **It's a Cat!**")
|
42 |
+
else:
|
43 |
+
st.write("π Upload an image to get started!")
|
catdogmodel.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e18cf37afdcd0bd4fe20ae2f5f861e9cf1dd7152f97256f68b0e121a890b904f
|
3 |
+
size 155322664
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
streamlit
|