Spaces:
Runtime error
Runtime error
Upload 14 files
Browse files- app.py +89 -0
- data/process.py +39 -0
- data/test.csv +0 -0
- models/statement_t5_model.bin +3 -0
- requirements.txt +6 -0
- statement_t5.py +78 -0
- statement_t5_tokenizer/merges.txt +0 -0
- statement_t5_tokenizer/special_tokens_map.json +753 -0
- statement_t5_tokenizer/tokenizer_config.json +64 -0
- statement_t5_tokenizer/vocab.json +0 -0
- t5_config.json +68 -0
- utils.py +192 -0
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
from utils import *
|
5 |
+
|
6 |
+
PATH = os.getcwd()
|
7 |
+
|
8 |
+
if __name__ == "__main__":
|
9 |
+
MAX_NUM_STATEMENTS = 155
|
10 |
+
|
11 |
+
st.set_page_config(page_title="AIBugHunter")
|
12 |
+
# sidebar
|
13 |
+
st.sidebar.title("AIBugHunter Web App")
|
14 |
+
behavior = st.sidebar.selectbox(label="NAVIGATOR IS HERE:",
|
15 |
+
options=["DEMO", "Analyze my own"])
|
16 |
+
if behavior == "DEMO":
|
17 |
+
# function title
|
18 |
+
st.title("C/C++ Vulnerability Dataset Viewer")
|
19 |
+
dataset_path = PATH + "/data/test.csv"
|
20 |
+
st.dataframe(pd.read_csv(dataset_path))
|
21 |
+
|
22 |
+
with st.form("input_form_a"):
|
23 |
+
idx = st.selectbox('Select an index', (str(i) for i in range(100)))
|
24 |
+
sub = st.form_submit_button("Select")
|
25 |
+
if sub:
|
26 |
+
idx = int(idx)
|
27 |
+
df = pd.read_csv(dataset_path)
|
28 |
+
input_code = df["function"][idx]
|
29 |
+
|
30 |
+
input_code = input_code.split("\n")[:MAX_NUM_STATEMENTS]
|
31 |
+
input_code = "\n".join(input_code)
|
32 |
+
# load model
|
33 |
+
with st.spinner("Scanning security issues..."):
|
34 |
+
# do inference
|
35 |
+
out = predict_vul_lines([input_code])
|
36 |
+
func_pred = out["batch_func_pred"][0]
|
37 |
+
func_confidence = out["batch_func_pred_prob"][0]
|
38 |
+
line_pred = out["batch_statement_pred"][0]
|
39 |
+
line_confidence = out["batch_statement_pred_prob"][0]
|
40 |
+
output = None
|
41 |
+
# inference complete
|
42 |
+
st.snow()
|
43 |
+
print_code = input_code.split("\n")[:MAX_NUM_STATEMENTS]
|
44 |
+
st.markdown("### Scanning Results:")
|
45 |
+
if func_pred == 0:
|
46 |
+
st.write("<span style='color:green'>" + "No vulnerabilities detected"+ "</span>", unsafe_allow_html=True)
|
47 |
+
st.markdown("### Non-Vulnerable Function:")
|
48 |
+
else:
|
49 |
+
for i in range(len(print_code)):
|
50 |
+
c = print_code[i]
|
51 |
+
vul = line_pred[i]
|
52 |
+
if vul == 1:
|
53 |
+
st.write(f"<span style='color:red'> Vulnerable Line {i+1} </span>", unsafe_allow_html=True)
|
54 |
+
st.code(c)
|
55 |
+
st.markdown("### Vulnerable Function:")
|
56 |
+
st.code(input_code, language="cpp", line_numbers=True)
|
57 |
+
|
58 |
+
elif behavior == "Analyze my own":
|
59 |
+
# user input of project title
|
60 |
+
## todo- limit the input to 150 lines
|
61 |
+
with st.form("input_form_b"):
|
62 |
+
input_code = st.text_area("Input a C/C++ function:", height=275)
|
63 |
+
submitted = st.form_submit_button("Analyze")
|
64 |
+
if submitted:
|
65 |
+
# load model
|
66 |
+
with st.spinner("Scanning security issues..."):
|
67 |
+
# do inference
|
68 |
+
out = predict_vul_lines([input_code])
|
69 |
+
func_pred = out["batch_func_pred"][0]
|
70 |
+
func_confidence = out["batch_func_pred_prob"][0]
|
71 |
+
line_pred = out["batch_statement_pred"][0]
|
72 |
+
line_confidence = out["batch_statement_pred_prob"][0]
|
73 |
+
output = None
|
74 |
+
# inference complete
|
75 |
+
st.snow()
|
76 |
+
print_code = input_code.split("\n")[:MAX_NUM_STATEMENTS]
|
77 |
+
st.markdown("### Scanning Results:")
|
78 |
+
if func_pred == 0:
|
79 |
+
st.write("<span style='color:green'>" + "No vulnerabilities detected"+ "</span>", unsafe_allow_html=True)
|
80 |
+
st.markdown("### Non-Vulnerable Function:")
|
81 |
+
else:
|
82 |
+
for i in range(len(print_code)):
|
83 |
+
c = print_code[i]
|
84 |
+
vul = line_pred[i]
|
85 |
+
if vul == 1:
|
86 |
+
st.write(f"<span style='color:red'> Vulnerable Line {i+1} </span>", unsafe_allow_html=True)
|
87 |
+
st.code(c)
|
88 |
+
st.markdown("### Vulnerable Function:")
|
89 |
+
st.code(input_code, language="cpp", line_numbers=True)
|
data/process.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
df = pd.read_csv("./processed_test.csv")
|
4 |
+
|
5 |
+
|
6 |
+
func_lab = []
|
7 |
+
stat_lab = []
|
8 |
+
cwe_id = []
|
9 |
+
func = []
|
10 |
+
|
11 |
+
df_vul = df[df["function_label"]==1][:50]
|
12 |
+
df_vul = df_vul.reset_index()
|
13 |
+
|
14 |
+
df_non_vul = df[df["function_label"]==0][:50]
|
15 |
+
df_non_vul = df_non_vul.reset_index()
|
16 |
+
|
17 |
+
for i in range(len(df_vul)):
|
18 |
+
func_lab.append(df_vul["function_label"][i])
|
19 |
+
stat_lab.append(df_vul["statement_label"][i])
|
20 |
+
|
21 |
+
id = df_vul["cwe_id"][i]
|
22 |
+
if df_vul["function_label"][i] == 0:
|
23 |
+
id = None
|
24 |
+
cwe_id.append(id)
|
25 |
+
func.append(df_vul["func_before"][i])
|
26 |
+
|
27 |
+
func_lab.append(df_non_vul["function_label"][i])
|
28 |
+
stat_lab.append(df_non_vul["statement_label"][i])
|
29 |
+
|
30 |
+
id = df_non_vul["cwe_id"][i]
|
31 |
+
if df_non_vul["function_label"][i] == 0:
|
32 |
+
id = None
|
33 |
+
|
34 |
+
cwe_id.append(id)
|
35 |
+
func.append(df_non_vul["func_before"][i])
|
36 |
+
|
37 |
+
|
38 |
+
pd.DataFrame({"function": func, "function_label": func_lab, "cwe_id": cwe_id, "statement_label": stat_lab}).to_csv("./test.csv", index=False)
|
39 |
+
|
data/test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/statement_t5_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19747f298f181dc8488dcf128991acdbf1df75e140df2ca4ecd92922cb9f16d6
|
3 |
+
size 471562706
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
pickle
|
4 |
+
numpy
|
5 |
+
onnxruntime
|
6 |
+
pandas
|
statement_t5.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class ClassificationHead(nn.Module):
|
6 |
+
"""Head for sentence-level classification tasks."""
|
7 |
+
def __init__(self, hidden_dim):
|
8 |
+
super().__init__()
|
9 |
+
self.dense = nn.Linear(hidden_dim, hidden_dim)
|
10 |
+
self.Dropout = nn.Dropout(0.1)
|
11 |
+
self.out_proj = nn.Linear(hidden_dim, 1)
|
12 |
+
self.rnn_pool = nn.GRU(input_size=768,
|
13 |
+
hidden_size=768,
|
14 |
+
num_layers=1,
|
15 |
+
batch_first=True)
|
16 |
+
self.func_dense = nn.Linear(hidden_dim, hidden_dim)
|
17 |
+
self.func_out_proj = nn.Linear(hidden_dim, 2)
|
18 |
+
|
19 |
+
def forward(self, hidden):
|
20 |
+
x = self.Dropout(hidden)
|
21 |
+
x = self.dense(x)
|
22 |
+
x = torch.tanh(x)
|
23 |
+
x = self.Dropout(x)
|
24 |
+
x = self.out_proj(x)
|
25 |
+
out, func_x = self.rnn_pool(hidden)
|
26 |
+
func_x = func_x.squeeze(0)
|
27 |
+
func_x = self.Dropout(func_x)
|
28 |
+
func_x = self.func_dense(func_x)
|
29 |
+
func_x = torch.tanh(func_x)
|
30 |
+
func_x = self.Dropout(func_x)
|
31 |
+
func_x = self.func_out_proj(func_x)
|
32 |
+
return x.squeeze(-1), func_x
|
33 |
+
|
34 |
+
class StatementT5(nn.Module):
|
35 |
+
def __init__(self, t5, tokenizer, device, hidden_dim=768):
|
36 |
+
super(StatementT5, self).__init__()
|
37 |
+
self.max_num_statement = 155
|
38 |
+
self.word_embedding = t5.shared
|
39 |
+
self.rnn_statement_embedding = nn.GRU(input_size=768,
|
40 |
+
hidden_size=768,
|
41 |
+
num_layers=1,
|
42 |
+
batch_first=True)
|
43 |
+
self.t5 = t5
|
44 |
+
self.tokenizer = tokenizer
|
45 |
+
self.device = device
|
46 |
+
# CLS head
|
47 |
+
self.classifier = ClassificationHead(hidden_dim=hidden_dim)
|
48 |
+
|
49 |
+
def forward(self, input_ids, statement_mask, labels=None, func_labels=None):
|
50 |
+
statement_mask = statement_mask[:, :self.max_num_statement]
|
51 |
+
if self.training:
|
52 |
+
embed = self.word_embedding(input_ids)
|
53 |
+
inputs_embeds = torch.randn(embed.shape[0], embed.shape[1], embed.shape[3]).to(self.device)
|
54 |
+
for i in range(len(embed)):
|
55 |
+
statement_of_tokens = embed[i]
|
56 |
+
out, statement_embed = self.rnn_statement_embedding(statement_of_tokens)
|
57 |
+
inputs_embeds[i, :, :] = statement_embed
|
58 |
+
inputs_embeds = inputs_embeds[:, :self.max_num_statement, :]
|
59 |
+
rep = self.t5(inputs_embeds=inputs_embeds, attention_mask=statement_mask).last_hidden_state
|
60 |
+
logits, func_logits = self.classifier(rep)
|
61 |
+
loss_fct = nn.CrossEntropyLoss()
|
62 |
+
statement_loss = loss_fct(logits, labels)
|
63 |
+
loss_fct_2 = nn.CrossEntropyLoss()
|
64 |
+
func_loss = loss_fct_2(func_logits, func_labels)
|
65 |
+
return statement_loss, func_loss
|
66 |
+
else:
|
67 |
+
embed = self.word_embedding(input_ids)
|
68 |
+
inputs_embeds = torch.randn(embed.shape[0], embed.shape[1], embed.shape[3]).to(self.device)
|
69 |
+
for i in range(len(embed)):
|
70 |
+
statement_of_tokens = embed[i]
|
71 |
+
out, statement_embed = self.rnn_statement_embedding(statement_of_tokens)
|
72 |
+
inputs_embeds[i, :, :] = statement_embed
|
73 |
+
inputs_embeds = inputs_embeds[:, :self.max_num_statement, :]
|
74 |
+
rep = self.t5(inputs_embeds=inputs_embeds, attention_mask=statement_mask).last_hidden_state
|
75 |
+
logits, func_logits = self.classifier(rep)
|
76 |
+
probs = torch.sigmoid(logits)
|
77 |
+
func_probs = torch.softmax(func_logits, dim=-1)
|
78 |
+
return probs, func_probs
|
statement_t5_tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
statement_t5_tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<extra_id_99>",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<extra_id_98>",
|
12 |
+
"lstrip": true,
|
13 |
+
"normalized": true,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"content": "<extra_id_97>",
|
19 |
+
"lstrip": true,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"content": "<extra_id_96>",
|
26 |
+
"lstrip": true,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"content": "<extra_id_95>",
|
33 |
+
"lstrip": true,
|
34 |
+
"normalized": true,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"content": "<extra_id_94>",
|
40 |
+
"lstrip": true,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"content": "<extra_id_93>",
|
47 |
+
"lstrip": true,
|
48 |
+
"normalized": true,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"content": "<extra_id_92>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"content": "<extra_id_91>",
|
61 |
+
"lstrip": true,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"content": "<extra_id_90>",
|
68 |
+
"lstrip": true,
|
69 |
+
"normalized": true,
|
70 |
+
"rstrip": false,
|
71 |
+
"single_word": false
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"content": "<extra_id_89>",
|
75 |
+
"lstrip": true,
|
76 |
+
"normalized": true,
|
77 |
+
"rstrip": false,
|
78 |
+
"single_word": false
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"content": "<extra_id_88>",
|
82 |
+
"lstrip": true,
|
83 |
+
"normalized": true,
|
84 |
+
"rstrip": false,
|
85 |
+
"single_word": false
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"content": "<extra_id_87>",
|
89 |
+
"lstrip": true,
|
90 |
+
"normalized": true,
|
91 |
+
"rstrip": false,
|
92 |
+
"single_word": false
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"content": "<extra_id_86>",
|
96 |
+
"lstrip": true,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"content": "<extra_id_85>",
|
103 |
+
"lstrip": true,
|
104 |
+
"normalized": true,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"content": "<extra_id_84>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"content": "<extra_id_83>",
|
117 |
+
"lstrip": true,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"content": "<extra_id_82>",
|
124 |
+
"lstrip": true,
|
125 |
+
"normalized": true,
|
126 |
+
"rstrip": false,
|
127 |
+
"single_word": false
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"content": "<extra_id_81>",
|
131 |
+
"lstrip": true,
|
132 |
+
"normalized": true,
|
133 |
+
"rstrip": false,
|
134 |
+
"single_word": false
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"content": "<extra_id_80>",
|
138 |
+
"lstrip": true,
|
139 |
+
"normalized": true,
|
140 |
+
"rstrip": false,
|
141 |
+
"single_word": false
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"content": "<extra_id_79>",
|
145 |
+
"lstrip": true,
|
146 |
+
"normalized": true,
|
147 |
+
"rstrip": false,
|
148 |
+
"single_word": false
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"content": "<extra_id_78>",
|
152 |
+
"lstrip": true,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"content": "<extra_id_77>",
|
159 |
+
"lstrip": true,
|
160 |
+
"normalized": true,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"content": "<extra_id_76>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"content": "<extra_id_75>",
|
173 |
+
"lstrip": true,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"content": "<extra_id_74>",
|
180 |
+
"lstrip": true,
|
181 |
+
"normalized": true,
|
182 |
+
"rstrip": false,
|
183 |
+
"single_word": false
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"content": "<extra_id_73>",
|
187 |
+
"lstrip": true,
|
188 |
+
"normalized": true,
|
189 |
+
"rstrip": false,
|
190 |
+
"single_word": false
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"content": "<extra_id_72>",
|
194 |
+
"lstrip": true,
|
195 |
+
"normalized": true,
|
196 |
+
"rstrip": false,
|
197 |
+
"single_word": false
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"content": "<extra_id_71>",
|
201 |
+
"lstrip": true,
|
202 |
+
"normalized": true,
|
203 |
+
"rstrip": false,
|
204 |
+
"single_word": false
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"content": "<extra_id_70>",
|
208 |
+
"lstrip": true,
|
209 |
+
"normalized": true,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"content": "<extra_id_69>",
|
215 |
+
"lstrip": true,
|
216 |
+
"normalized": true,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"content": "<extra_id_68>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": true,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"content": "<extra_id_67>",
|
229 |
+
"lstrip": true,
|
230 |
+
"normalized": true,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"content": "<extra_id_66>",
|
236 |
+
"lstrip": true,
|
237 |
+
"normalized": true,
|
238 |
+
"rstrip": false,
|
239 |
+
"single_word": false
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"content": "<extra_id_65>",
|
243 |
+
"lstrip": true,
|
244 |
+
"normalized": true,
|
245 |
+
"rstrip": false,
|
246 |
+
"single_word": false
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"content": "<extra_id_64>",
|
250 |
+
"lstrip": true,
|
251 |
+
"normalized": true,
|
252 |
+
"rstrip": false,
|
253 |
+
"single_word": false
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"content": "<extra_id_63>",
|
257 |
+
"lstrip": true,
|
258 |
+
"normalized": true,
|
259 |
+
"rstrip": false,
|
260 |
+
"single_word": false
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"content": "<extra_id_62>",
|
264 |
+
"lstrip": true,
|
265 |
+
"normalized": true,
|
266 |
+
"rstrip": false,
|
267 |
+
"single_word": false
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"content": "<extra_id_61>",
|
271 |
+
"lstrip": true,
|
272 |
+
"normalized": true,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"content": "<extra_id_60>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": true,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"content": "<extra_id_59>",
|
285 |
+
"lstrip": true,
|
286 |
+
"normalized": true,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"content": "<extra_id_58>",
|
292 |
+
"lstrip": true,
|
293 |
+
"normalized": true,
|
294 |
+
"rstrip": false,
|
295 |
+
"single_word": false
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"content": "<extra_id_57>",
|
299 |
+
"lstrip": true,
|
300 |
+
"normalized": true,
|
301 |
+
"rstrip": false,
|
302 |
+
"single_word": false
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"content": "<extra_id_56>",
|
306 |
+
"lstrip": true,
|
307 |
+
"normalized": true,
|
308 |
+
"rstrip": false,
|
309 |
+
"single_word": false
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"content": "<extra_id_55>",
|
313 |
+
"lstrip": true,
|
314 |
+
"normalized": true,
|
315 |
+
"rstrip": false,
|
316 |
+
"single_word": false
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"content": "<extra_id_54>",
|
320 |
+
"lstrip": true,
|
321 |
+
"normalized": true,
|
322 |
+
"rstrip": false,
|
323 |
+
"single_word": false
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"content": "<extra_id_53>",
|
327 |
+
"lstrip": true,
|
328 |
+
"normalized": true,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"content": "<extra_id_52>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": true,
|
336 |
+
"rstrip": false,
|
337 |
+
"single_word": false
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"content": "<extra_id_51>",
|
341 |
+
"lstrip": true,
|
342 |
+
"normalized": true,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"content": "<extra_id_50>",
|
348 |
+
"lstrip": true,
|
349 |
+
"normalized": true,
|
350 |
+
"rstrip": false,
|
351 |
+
"single_word": false
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"content": "<extra_id_49>",
|
355 |
+
"lstrip": true,
|
356 |
+
"normalized": true,
|
357 |
+
"rstrip": false,
|
358 |
+
"single_word": false
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"content": "<extra_id_48>",
|
362 |
+
"lstrip": true,
|
363 |
+
"normalized": true,
|
364 |
+
"rstrip": false,
|
365 |
+
"single_word": false
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"content": "<extra_id_47>",
|
369 |
+
"lstrip": true,
|
370 |
+
"normalized": true,
|
371 |
+
"rstrip": false,
|
372 |
+
"single_word": false
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"content": "<extra_id_46>",
|
376 |
+
"lstrip": true,
|
377 |
+
"normalized": true,
|
378 |
+
"rstrip": false,
|
379 |
+
"single_word": false
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"content": "<extra_id_45>",
|
383 |
+
"lstrip": true,
|
384 |
+
"normalized": true,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"content": "<extra_id_44>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": true,
|
392 |
+
"rstrip": false,
|
393 |
+
"single_word": false
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"content": "<extra_id_43>",
|
397 |
+
"lstrip": true,
|
398 |
+
"normalized": true,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"content": "<extra_id_42>",
|
404 |
+
"lstrip": true,
|
405 |
+
"normalized": true,
|
406 |
+
"rstrip": false,
|
407 |
+
"single_word": false
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"content": "<extra_id_41>",
|
411 |
+
"lstrip": true,
|
412 |
+
"normalized": true,
|
413 |
+
"rstrip": false,
|
414 |
+
"single_word": false
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"content": "<extra_id_40>",
|
418 |
+
"lstrip": true,
|
419 |
+
"normalized": true,
|
420 |
+
"rstrip": false,
|
421 |
+
"single_word": false
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"content": "<extra_id_39>",
|
425 |
+
"lstrip": true,
|
426 |
+
"normalized": true,
|
427 |
+
"rstrip": false,
|
428 |
+
"single_word": false
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"content": "<extra_id_38>",
|
432 |
+
"lstrip": true,
|
433 |
+
"normalized": true,
|
434 |
+
"rstrip": false,
|
435 |
+
"single_word": false
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"content": "<extra_id_37>",
|
439 |
+
"lstrip": true,
|
440 |
+
"normalized": true,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"content": "<extra_id_36>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": true,
|
448 |
+
"rstrip": false,
|
449 |
+
"single_word": false
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"content": "<extra_id_35>",
|
453 |
+
"lstrip": true,
|
454 |
+
"normalized": true,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"content": "<extra_id_34>",
|
460 |
+
"lstrip": true,
|
461 |
+
"normalized": true,
|
462 |
+
"rstrip": false,
|
463 |
+
"single_word": false
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"content": "<extra_id_33>",
|
467 |
+
"lstrip": true,
|
468 |
+
"normalized": true,
|
469 |
+
"rstrip": false,
|
470 |
+
"single_word": false
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"content": "<extra_id_32>",
|
474 |
+
"lstrip": true,
|
475 |
+
"normalized": true,
|
476 |
+
"rstrip": false,
|
477 |
+
"single_word": false
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"content": "<extra_id_31>",
|
481 |
+
"lstrip": true,
|
482 |
+
"normalized": true,
|
483 |
+
"rstrip": false,
|
484 |
+
"single_word": false
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"content": "<extra_id_30>",
|
488 |
+
"lstrip": true,
|
489 |
+
"normalized": true,
|
490 |
+
"rstrip": false,
|
491 |
+
"single_word": false
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"content": "<extra_id_29>",
|
495 |
+
"lstrip": true,
|
496 |
+
"normalized": true,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"content": "<extra_id_28>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": true,
|
504 |
+
"rstrip": false,
|
505 |
+
"single_word": false
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"content": "<extra_id_27>",
|
509 |
+
"lstrip": true,
|
510 |
+
"normalized": true,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"content": "<extra_id_26>",
|
516 |
+
"lstrip": true,
|
517 |
+
"normalized": true,
|
518 |
+
"rstrip": false,
|
519 |
+
"single_word": false
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"content": "<extra_id_25>",
|
523 |
+
"lstrip": true,
|
524 |
+
"normalized": true,
|
525 |
+
"rstrip": false,
|
526 |
+
"single_word": false
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"content": "<extra_id_24>",
|
530 |
+
"lstrip": true,
|
531 |
+
"normalized": true,
|
532 |
+
"rstrip": false,
|
533 |
+
"single_word": false
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"content": "<extra_id_23>",
|
537 |
+
"lstrip": true,
|
538 |
+
"normalized": true,
|
539 |
+
"rstrip": false,
|
540 |
+
"single_word": false
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"content": "<extra_id_22>",
|
544 |
+
"lstrip": true,
|
545 |
+
"normalized": true,
|
546 |
+
"rstrip": false,
|
547 |
+
"single_word": false
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"content": "<extra_id_21>",
|
551 |
+
"lstrip": true,
|
552 |
+
"normalized": true,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"content": "<extra_id_20>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": true,
|
560 |
+
"rstrip": false,
|
561 |
+
"single_word": false
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"content": "<extra_id_19>",
|
565 |
+
"lstrip": true,
|
566 |
+
"normalized": true,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"content": "<extra_id_18>",
|
572 |
+
"lstrip": true,
|
573 |
+
"normalized": true,
|
574 |
+
"rstrip": false,
|
575 |
+
"single_word": false
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"content": "<extra_id_17>",
|
579 |
+
"lstrip": true,
|
580 |
+
"normalized": true,
|
581 |
+
"rstrip": false,
|
582 |
+
"single_word": false
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"content": "<extra_id_16>",
|
586 |
+
"lstrip": true,
|
587 |
+
"normalized": true,
|
588 |
+
"rstrip": false,
|
589 |
+
"single_word": false
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"content": "<extra_id_15>",
|
593 |
+
"lstrip": true,
|
594 |
+
"normalized": true,
|
595 |
+
"rstrip": false,
|
596 |
+
"single_word": false
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"content": "<extra_id_14>",
|
600 |
+
"lstrip": true,
|
601 |
+
"normalized": true,
|
602 |
+
"rstrip": false,
|
603 |
+
"single_word": false
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"content": "<extra_id_13>",
|
607 |
+
"lstrip": true,
|
608 |
+
"normalized": true,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"content": "<extra_id_12>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": true,
|
616 |
+
"rstrip": false,
|
617 |
+
"single_word": false
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"content": "<extra_id_11>",
|
621 |
+
"lstrip": true,
|
622 |
+
"normalized": true,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"content": "<extra_id_10>",
|
628 |
+
"lstrip": true,
|
629 |
+
"normalized": true,
|
630 |
+
"rstrip": false,
|
631 |
+
"single_word": false
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"content": "<extra_id_9>",
|
635 |
+
"lstrip": true,
|
636 |
+
"normalized": true,
|
637 |
+
"rstrip": false,
|
638 |
+
"single_word": false
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"content": "<extra_id_8>",
|
642 |
+
"lstrip": true,
|
643 |
+
"normalized": true,
|
644 |
+
"rstrip": false,
|
645 |
+
"single_word": false
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"content": "<extra_id_7>",
|
649 |
+
"lstrip": true,
|
650 |
+
"normalized": true,
|
651 |
+
"rstrip": false,
|
652 |
+
"single_word": false
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"content": "<extra_id_6>",
|
656 |
+
"lstrip": true,
|
657 |
+
"normalized": true,
|
658 |
+
"rstrip": false,
|
659 |
+
"single_word": false
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"content": "<extra_id_5>",
|
663 |
+
"lstrip": true,
|
664 |
+
"normalized": true,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"content": "<extra_id_4>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": true,
|
672 |
+
"rstrip": false,
|
673 |
+
"single_word": false
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"content": "<extra_id_3>",
|
677 |
+
"lstrip": true,
|
678 |
+
"normalized": true,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"content": "<extra_id_2>",
|
684 |
+
"lstrip": true,
|
685 |
+
"normalized": true,
|
686 |
+
"rstrip": false,
|
687 |
+
"single_word": false
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"content": "<extra_id_1>",
|
691 |
+
"lstrip": true,
|
692 |
+
"normalized": true,
|
693 |
+
"rstrip": false,
|
694 |
+
"single_word": false
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"content": "<extra_id_0>",
|
698 |
+
"lstrip": true,
|
699 |
+
"normalized": true,
|
700 |
+
"rstrip": false,
|
701 |
+
"single_word": false
|
702 |
+
}
|
703 |
+
],
|
704 |
+
"bos_token": {
|
705 |
+
"content": "<s>",
|
706 |
+
"lstrip": false,
|
707 |
+
"normalized": true,
|
708 |
+
"rstrip": false,
|
709 |
+
"single_word": false
|
710 |
+
},
|
711 |
+
"cls_token": {
|
712 |
+
"content": "<s>",
|
713 |
+
"lstrip": false,
|
714 |
+
"normalized": true,
|
715 |
+
"rstrip": false,
|
716 |
+
"single_word": false
|
717 |
+
},
|
718 |
+
"eos_token": {
|
719 |
+
"content": "</s>",
|
720 |
+
"lstrip": false,
|
721 |
+
"normalized": true,
|
722 |
+
"rstrip": false,
|
723 |
+
"single_word": false
|
724 |
+
},
|
725 |
+
"mask_token": {
|
726 |
+
"content": "<mask>",
|
727 |
+
"lstrip": true,
|
728 |
+
"normalized": true,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false
|
731 |
+
},
|
732 |
+
"pad_token": {
|
733 |
+
"content": "<pad>",
|
734 |
+
"lstrip": false,
|
735 |
+
"normalized": true,
|
736 |
+
"rstrip": false,
|
737 |
+
"single_word": false
|
738 |
+
},
|
739 |
+
"sep_token": {
|
740 |
+
"content": "</s>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": true,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false
|
745 |
+
},
|
746 |
+
"unk_token": {
|
747 |
+
"content": "<unk>",
|
748 |
+
"lstrip": false,
|
749 |
+
"normalized": true,
|
750 |
+
"rstrip": false,
|
751 |
+
"single_word": false
|
752 |
+
}
|
753 |
+
}
|
statement_t5_tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"cls_token": {
|
12 |
+
"__type": "AddedToken",
|
13 |
+
"content": "<s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"eos_token": {
|
20 |
+
"__type": "AddedToken",
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"errors": "replace",
|
28 |
+
"mask_token": {
|
29 |
+
"__type": "AddedToken",
|
30 |
+
"content": "<mask>",
|
31 |
+
"lstrip": true,
|
32 |
+
"normalized": true,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false
|
35 |
+
},
|
36 |
+
"model_max_length": 512,
|
37 |
+
"name_or_path": "Salesforce/codet5-base",
|
38 |
+
"pad_token": {
|
39 |
+
"__type": "AddedToken",
|
40 |
+
"content": "<pad>",
|
41 |
+
"lstrip": false,
|
42 |
+
"normalized": true,
|
43 |
+
"rstrip": false,
|
44 |
+
"single_word": false
|
45 |
+
},
|
46 |
+
"sep_token": {
|
47 |
+
"__type": "AddedToken",
|
48 |
+
"content": "</s>",
|
49 |
+
"lstrip": false,
|
50 |
+
"normalized": true,
|
51 |
+
"rstrip": false,
|
52 |
+
"single_word": false
|
53 |
+
},
|
54 |
+
"special_tokens_map_file": "/home/michael/.cache/huggingface/transformers/5941df5e4315c5ab63b7b2ac791fb0bf0f209744a055c06b43b5274849137cdd.b9905d0575bde443a20834122b6e2d48e853b2e36444ce98ddeb43c38097eb3f",
|
55 |
+
"tokenizer_class": "RobertaTokenizer",
|
56 |
+
"unk_token": {
|
57 |
+
"__type": "AddedToken",
|
58 |
+
"content": "<unk>",
|
59 |
+
"lstrip": false,
|
60 |
+
"normalized": true,
|
61 |
+
"rstrip": false,
|
62 |
+
"single_word": false
|
63 |
+
}
|
64 |
+
}
|
statement_t5_tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
t5_config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Salesforce/codet5-base",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"d_ff": 3072,
|
8 |
+
"d_kv": 64,
|
9 |
+
"d_model": 768,
|
10 |
+
"decoder_start_token_id": 0,
|
11 |
+
"dense_act_fn": "relu",
|
12 |
+
"dropout_rate": 0.1,
|
13 |
+
"eos_token_id": 2,
|
14 |
+
"feed_forward_proj": "relu",
|
15 |
+
"gradient_checkpointing": false,
|
16 |
+
"id2label": {
|
17 |
+
"0": "LABEL_0"
|
18 |
+
},
|
19 |
+
"initializer_factor": 1.0,
|
20 |
+
"is_encoder_decoder": true,
|
21 |
+
"is_gated_act": false,
|
22 |
+
"label2id": {
|
23 |
+
"LABEL_0": 0
|
24 |
+
},
|
25 |
+
"layer_norm_epsilon": 1e-06,
|
26 |
+
"model_type": "t5",
|
27 |
+
"n_positions": 512,
|
28 |
+
"num_decoder_layers": 12,
|
29 |
+
"num_heads": 12,
|
30 |
+
"num_layers": 12,
|
31 |
+
"output_past": true,
|
32 |
+
"pad_token_id": 0,
|
33 |
+
"relative_attention_max_distance": 128,
|
34 |
+
"relative_attention_num_buckets": 32,
|
35 |
+
"task_specific_params": {
|
36 |
+
"summarization": {
|
37 |
+
"early_stopping": true,
|
38 |
+
"length_penalty": 2.0,
|
39 |
+
"max_length": 200,
|
40 |
+
"min_length": 30,
|
41 |
+
"no_repeat_ngram_size": 3,
|
42 |
+
"num_beams": 4,
|
43 |
+
"prefix": "summarize: "
|
44 |
+
},
|
45 |
+
"translation_en_to_de": {
|
46 |
+
"early_stopping": true,
|
47 |
+
"max_length": 300,
|
48 |
+
"num_beams": 4,
|
49 |
+
"prefix": "translate English to German: "
|
50 |
+
},
|
51 |
+
"translation_en_to_fr": {
|
52 |
+
"early_stopping": true,
|
53 |
+
"max_length": 300,
|
54 |
+
"num_beams": 4,
|
55 |
+
"prefix": "translate English to French: "
|
56 |
+
},
|
57 |
+
"translation_en_to_ro": {
|
58 |
+
"early_stopping": true,
|
59 |
+
"max_length": 300,
|
60 |
+
"num_beams": 4,
|
61 |
+
"prefix": "translate English to Romanian: "
|
62 |
+
}
|
63 |
+
},
|
64 |
+
"torch_dtype": "float32",
|
65 |
+
"transformers_version": "4.27.3",
|
66 |
+
"use_cache": true,
|
67 |
+
"vocab_size": 32100
|
68 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import RobertaTokenizer, T5Config, T5EncoderModel
|
2 |
+
from statement_t5 import StatementT5
|
3 |
+
import torch
|
4 |
+
import pickle
|
5 |
+
import numpy as np
|
6 |
+
import onnxruntime
|
7 |
+
|
8 |
+
def to_numpy(tensor):
|
9 |
+
""" get np input for onnx runtime model """
|
10 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
|
11 |
+
|
12 |
+
def predict_vul_lines(code: list, gpu: bool = False) -> dict:
|
13 |
+
"""Generate statement-level and function-level vulnerability prediction probabilities.
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
code : :obj:`list`
|
17 |
+
A list of String functions.
|
18 |
+
gpu : bool
|
19 |
+
Defines if CUDA inference is enabled
|
20 |
+
Returns
|
21 |
+
-------
|
22 |
+
:obj:`dict`
|
23 |
+
A dictionary with two keys, "batch_vul_pred", "batch_vul_pred_prob", and "batch_line_scores"
|
24 |
+
"batch_func_pred" stores a list of function-level vulnerability prediction: [0, 1, ...] where 0 means non-vulnerable and 1 means vulnerable
|
25 |
+
"batch_func_pred_prob" stores a list of function-level vulnerability prediction probabilities [0.89, 0.75, ...] corresponding to "batch_func_pred"
|
26 |
+
"batch_statement_pred" stores a list of statement-level vulnerability prediction: [0, 1, ...] where 0 means non-vulnerable and 1 means vulnerable
|
27 |
+
"batch_statement_pred_prob" stores a list of statement-level vulnerability prediction probabilities [0.89, 0.75, ...] corresponding to "batch_statement_pred"
|
28 |
+
"""
|
29 |
+
MAX_STATEMENTS = 155
|
30 |
+
MAX_STATEMENT_LENGTH = 20
|
31 |
+
DEVICE = 'cuda' if gpu else 'cpu'
|
32 |
+
# load tokenizer
|
33 |
+
tokenizer = RobertaTokenizer.from_pretrained("./statement_t5_tokenizer")
|
34 |
+
# load model
|
35 |
+
config = T5Config.from_pretrained("./t5_config.json")
|
36 |
+
model = T5EncoderModel(config=config)
|
37 |
+
model = StatementT5(model, tokenizer, device=DEVICE)
|
38 |
+
output_dir = "./models/statement_t5_model.bin"
|
39 |
+
model.load_state_dict(torch.load(output_dir, map_location=DEVICE))
|
40 |
+
model.to(DEVICE)
|
41 |
+
model.eval()
|
42 |
+
input_ids, statement_mask = statement_tokenization(code, MAX_STATEMENTS, MAX_STATEMENT_LENGTH, tokenizer)
|
43 |
+
with torch.no_grad():
|
44 |
+
statement_probs, func_probs = model(input_ids=input_ids, statement_mask=statement_mask)
|
45 |
+
func_preds = torch.argmax(func_probs, dim=-1)
|
46 |
+
statement_preds = torch.where(statement_probs>0.5, 1, 0)
|
47 |
+
return {"batch_func_pred": func_preds, "batch_func_pred_prob": func_probs,
|
48 |
+
"batch_statement_pred": statement_preds, "batch_statement_pred_prob": statement_probs}
|
49 |
+
|
50 |
+
def statement_tokenization(code: list, max_statements: int, max_statement_length: int, tokenizer):
|
51 |
+
batch_input_ids = []
|
52 |
+
batch_statement_mask = []
|
53 |
+
for c in code:
|
54 |
+
source = c.split("\n")
|
55 |
+
source = [statement for statement in source if statement != ""]
|
56 |
+
|
57 |
+
source = source[:max_statements]
|
58 |
+
padding_statement = [tokenizer.pad_token_id for _ in range(20)]
|
59 |
+
|
60 |
+
input_ids = []
|
61 |
+
for stat in source:
|
62 |
+
ids_ = tokenizer.encode(str(stat),
|
63 |
+
truncation=True,
|
64 |
+
max_length=max_statement_length,
|
65 |
+
padding='max_length',
|
66 |
+
add_special_tokens=False)
|
67 |
+
input_ids.append(ids_)
|
68 |
+
if len(input_ids) < max_statements:
|
69 |
+
for _ in range(max_statements-len(input_ids)):
|
70 |
+
input_ids.append(padding_statement)
|
71 |
+
statement_mask = []
|
72 |
+
for statement in input_ids:
|
73 |
+
if statement == padding_statement:
|
74 |
+
statement_mask.append(0)
|
75 |
+
else:
|
76 |
+
statement_mask.append(1)
|
77 |
+
batch_input_ids.append(input_ids)
|
78 |
+
batch_statement_mask.append(statement_mask)
|
79 |
+
return torch.tensor(batch_input_ids), torch.tensor(batch_statement_mask)
|
80 |
+
|
81 |
+
def predict_cweid(code: list, gpu: bool = False) -> dict:
|
82 |
+
"""Generate CWE-IDs and CWE Abstract Types Predictions.
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
code : :obj:`list`
|
86 |
+
A list of String functions.
|
87 |
+
gpu : bool
|
88 |
+
Defines if CUDA inference is enabled
|
89 |
+
Returns
|
90 |
+
-------
|
91 |
+
:obj:`dict`
|
92 |
+
A dictionary with four keys, "cwe_id", "cwe_id_prob", "cwe_type", "cwe_type_prob"
|
93 |
+
"cwe_id" stores a list of CWE-ID predictions: [CWE-787, CWE-119, ...]
|
94 |
+
"cwe_id_prob" stores a list of confidence scores of CWE-ID predictions [0.9, 0.7, ...]
|
95 |
+
"cwe_type" stores a list of CWE abstract types predictions: ["Base", "Class", ...]
|
96 |
+
"cwe_type_prob" stores a list of confidence scores of CWE abstract types predictions [0.9, 0.7, ...]
|
97 |
+
"""
|
98 |
+
provider = ["CUDAExecutionProvider", "CPUExecutionProvider"] if gpu else ["CPUExecutionProvider"]
|
99 |
+
with open("./inference-common/label_map.pkl", "rb") as f:
|
100 |
+
cwe_id_map, cwe_type_map = pickle.load(f)
|
101 |
+
# load tokenizer
|
102 |
+
tokenizer = RobertaTokenizer.from_pretrained("./inference-common/tokenizer")
|
103 |
+
tokenizer.add_tokens(["<cls_type>"])
|
104 |
+
tokenizer.cls_type_token = "<cls_type>"
|
105 |
+
model_input = []
|
106 |
+
for c in code:
|
107 |
+
code_tokens = tokenizer.tokenize(str(c))[:512 - 3]
|
108 |
+
source_tokens = [tokenizer.cls_token] + code_tokens + [tokenizer.cls_type_token] + [tokenizer.sep_token]
|
109 |
+
input_ids = tokenizer.convert_tokens_to_ids(source_tokens)
|
110 |
+
padding_length = 512 - len(input_ids)
|
111 |
+
input_ids += [tokenizer.pad_token_id] * padding_length
|
112 |
+
model_input.append(input_ids)
|
113 |
+
device = "cuda" if gpu else "cpu"
|
114 |
+
model_input = torch.tensor(model_input, device=device)
|
115 |
+
# onnx runtime session
|
116 |
+
ort_session = onnxruntime.InferenceSession("./models/cwe_model.onnx", providers=provider)
|
117 |
+
# compute ONNX Runtime output prediction
|
118 |
+
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(model_input)}
|
119 |
+
cwe_id_prob, cwe_type_prob = ort_session.run(None, ort_inputs)
|
120 |
+
# batch_cwe_id_pred (1D list with shape of [batch size]): [pred_1, pred_2, ..., pred_n]
|
121 |
+
batch_cwe_id = np.argmax(cwe_id_prob, axis=-1).tolist()
|
122 |
+
# map predicted idx back to CWE-ID
|
123 |
+
batch_cwe_id_pred = [cwe_id_map[str(idx)] for idx in batch_cwe_id]
|
124 |
+
# batch_cwe_id_pred_prob (1D list with shape of [batch_size]): [prob_1, prob_2, ..., prob_n]
|
125 |
+
batch_cwe_id_pred_prob = []
|
126 |
+
for i in range(len(cwe_id_prob)):
|
127 |
+
batch_cwe_id_pred_prob.append(cwe_id_prob[i][batch_cwe_id[i]].item())
|
128 |
+
# batch_cwe_type_pred (1D list with shape of [batch size]): [pred_1, pred_2, ..., pred_n]
|
129 |
+
batch_cwe_type = np.argmax(cwe_type_prob, axis=-1).tolist()
|
130 |
+
# map predicted idx back to CWE-Type
|
131 |
+
batch_cwe_type_pred = [cwe_type_map[str(idx)] for idx in batch_cwe_type]
|
132 |
+
# batch_cwe_type_pred_prob (1D list with shape of [batch_size]): [prob_1, prob_2, ..., prob_n]
|
133 |
+
batch_cwe_type_pred_prob = []
|
134 |
+
for i in range(len(cwe_type_prob)):
|
135 |
+
batch_cwe_type_pred_prob.append(cwe_type_prob[i][batch_cwe_type[i]].item())
|
136 |
+
return {"cwe_id": batch_cwe_id_pred,
|
137 |
+
"cwe_id_prob": batch_cwe_id_pred_prob,
|
138 |
+
"cwe_type": batch_cwe_type_pred,
|
139 |
+
"cwe_type_prob": batch_cwe_type_pred_prob}
|
140 |
+
|
141 |
+
def predict_sev(code: list, gpu: bool = False) -> dict:
|
142 |
+
"""Generate CVSS severity score predictions.
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
code : :obj:`list`
|
146 |
+
A list of String functions.
|
147 |
+
gpu : bool
|
148 |
+
Defines if CUDA inference is enabled
|
149 |
+
Returns
|
150 |
+
-------
|
151 |
+
:obj:`dict`
|
152 |
+
A dictionary with two keys, "batch_sev_score", "batch_sev_class"
|
153 |
+
"batch_sev_score" stores a list of severity score prediction: [1.0, 5.0, 9.0 ...]
|
154 |
+
"batch_sev_class" stores a list of severity class based on predicted severity score ["Medium", "Critical"...]
|
155 |
+
"""
|
156 |
+
provider = ["CUDAExecutionProvider", "CPUExecutionProvider"] if gpu else ["CPUExecutionProvider"]
|
157 |
+
# load tokenizer
|
158 |
+
tokenizer = RobertaTokenizer.from_pretrained("./inference-common/tokenizer")
|
159 |
+
model_input = tokenizer(code, truncation=True, max_length=512, padding='max_length',
|
160 |
+
return_tensors="pt").input_ids
|
161 |
+
# onnx runtime session
|
162 |
+
ort_session = onnxruntime.InferenceSession("./models/sev_model.onnx", providers=provider)
|
163 |
+
# compute ONNX Runtime output prediction
|
164 |
+
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(model_input)}
|
165 |
+
cvss_score = ort_session.run(None, ort_inputs)
|
166 |
+
batch_sev_score = list(cvss_score[0].flatten().tolist())
|
167 |
+
batch_sev_class = []
|
168 |
+
for i in range(len(batch_sev_score)):
|
169 |
+
if batch_sev_score[i] == 0:
|
170 |
+
batch_sev_class.append("None")
|
171 |
+
elif batch_sev_score[i] < 4:
|
172 |
+
batch_sev_class.append("Low")
|
173 |
+
elif batch_sev_score[i] < 7:
|
174 |
+
batch_sev_class.append("Medium")
|
175 |
+
elif batch_sev_score[i] < 9:
|
176 |
+
batch_sev_class.append("High")
|
177 |
+
else:
|
178 |
+
batch_sev_class.append("Critical")
|
179 |
+
return {"batch_sev_score": batch_sev_score, "batch_sev_class": batch_sev_class}
|
180 |
+
|
181 |
+
def predict(code: list):
|
182 |
+
vul_preds = predict_vul_lines(code)
|
183 |
+
cwe_preds = predict_cweid(code)
|
184 |
+
sev_preds = predict_sev(code)
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
import pandas as pd
|
188 |
+
df = pd.read_csv("./data/processed_test.csv")
|
189 |
+
funcs = df["func_before"].tolist()
|
190 |
+
for code in funcs:
|
191 |
+
out = predict_vul_lines([code])
|
192 |
+
print(out["batch_func_pred"][0])
|